Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Exp Bot ; 68(7): 1585-1597, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369656

RESUMO

The family of maize Kip-related proteins (KRPs) has been studied and a nomenclature based on the relationship to rice KRP genes is proposed. Expression studies of KRP genes indicate that all are expressed at 24 h of seed germination but expression is differential in the different tissues of maize plantlets. Recombinant KRP1;1 and KRP4;2 proteins, members of different KRP classes, were used to study association to and inhibitory activity on different maize cyclin D (CycD)-cyclin-dependent kinase (CDK) complexes. Kinase activity in CycD2;2-CDK, CycD4;2-CDK, and CycD5;3-CDK complexes was inhibited by both KRPs; however, only KRP1;1 inhibited activity in the CycD6;1-CDK complex, not KRP4;2. Whereas KRP1;1 associated with either CycD2;2 or CycD6;1, and to cyclin-dependent kinase A (CDKA) recombinant proteins, forming ternary complexes, KRP4;2 bound CDKA and CycD2;2 but did not bind CycD6;1, establishing a differential association capacity. All CycD-CDK complexes included here phosphorylated both the retinoblastoma-related (RBR) protein and the two KRPs; interestingly, while KRP4;2 phosphorylated by the CycD2;2-CDK complex increased its inhibitory capacity, when phosphorylated by the CycD6;1-CDK complex the inhibitory capacity was reduced or eliminated. Evidence suggests that the phosphorylated residues in KRP4;2 may be different for every kinase, and this would influence its performance as a cyclin-CDK inhibitor.


Assuntos
Ciclina D/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Zea mays/genética , Ciclina D/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fosforilação , Proteínas de Plantas/metabolismo , Zea mays/metabolismo
2.
STAR Protoc ; 3(1): 101082, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35059655

RESUMO

Saccharomyces cerevisiae is a leading model system for genome-wide screens, but low-frequency events (e.g., point mutations, recombination events) are difficult to detect with existing approaches. Here, we describe a high-throughput screening technique to detect low-frequency events using high-throughput replica pinning of high-density arrays of yeast colonies. This approach can be used to screen genes that control any process involving low-frequency events for which genetically selectable reporters are available, e.g., spontaneous mutations, recombination, and transcription errors. For complete details on the use and execution of this protocol, please refer to (Novarina et al., 2020a, 2020b).


Assuntos
Saccharomyces cerevisiae , Mutagênese , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA