Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Clin Exp Ophthalmol ; 51(1): 58-66, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36086942

RESUMO

BACKGROUND: To explore the use of a thermoreversible copolymer gel coating to prevent donor tissue scrolling in Descemet's membrane endothelial keratoplasty (DMEK). METHODS: PLGA-PEG-PLGA triblock copolymer was synthesised via ring opening polymerisation. Two formulations were fabricated and gelation properties characterised using rheological analyses. Endothelial cytotoxicity of the copolymer was assessed using a Trypan Blue exclusion assay. Thickness of the copolymer gel coating on the endothelial surface was analysed using anterior segment optical coherence tomography (OCT) (RTVue-100, Optovue Inc.). Gold nanoparticles were added to the copolymer to aid visualisation using OCT. Prevention of Descemet membrane donor scrolling was represented via a novel, in vitro, immersion of copolymer coated donor graft material. RESULTS: Two different formulations of PLGA-PEG-PLGA copolymer were successfully fabricated and the desired peak gelling temperature of 24°C was achieved by polymer blending. Application of 20%, 30% and 40% (wt/vol) polymer concentrations resulted in a statistically significant increase in polymer thickness on the endothelium (p < 0.001). There was no detectable endothelial cytotoxicity. The polymer was easy to apply to the endothelium and prevented scrolling of the DMEK graft. CONCLUSION: This PLGA-PEG-PLGA thermoreversible copolymer gel could be exploited as a therapeutic aid for preventing DMEK graft scrolling.


Assuntos
Ceratoplastia Endotelial com Remoção da Lâmina Limitante Posterior , Nanopartículas Metálicas , Humanos , Lâmina Limitante Posterior/cirurgia , Endotélio Corneano/cirurgia , Ouro , Ceratoplastia Endotelial com Remoção da Lâmina Limitante Posterior/métodos , Polímeros
2.
Eur Respir J ; 60(1)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996828

RESUMO

BACKGROUND: Airway smooth muscle (ASM) cells are fundamental to asthma pathogenesis, influencing bronchoconstriction, airway hyperresponsiveness and airway remodelling. The extracellular matrix (ECM) can influence tissue remodelling pathways; however, to date no study has investigated the effect of ASM ECM stiffness and cross-linking on the development of asthmatic airway remodelling. We hypothesised that transforming growth factor-ß (TGF-ß) activation by ASM cells is influenced by ECM in asthma and sought to investigate the mechanisms involved. METHODS: This study combines in vitro and in vivo approaches: human ASM cells were used in vitro to investigate basal TGF-ß activation and expression of ECM cross-linking enzymes. Human bronchial biopsies from asthmatic and nonasthmatic donors were used to confirm lysyl oxidase like 2 (LOXL2) expression in ASM. A chronic ovalbumin (OVA) model of asthma was used to study the effect of LOXL2 inhibition on airway remodelling. RESULTS: We found that asthmatic ASM cells activated more TGF-ß basally than nonasthmatic controls and that diseased cell-derived ECM influences levels of TGF-ß activated. Our data demonstrate that the ECM cross-linking enzyme LOXL2 is increased in asthmatic ASM cells and in bronchial biopsies. Crucially, we show that LOXL2 inhibition reduces ECM stiffness and TGF-ß activation in vitro, and can reduce subepithelial collagen deposition and ASM thickness, two features of airway remodelling, in an OVA mouse model of asthma. CONCLUSION: These data are the first to highlight a role for LOXL2 in the development of asthmatic airway remodelling and suggest that LOXL2 inhibition warrants further investigation as a potential therapy to reduce remodelling of the airways in severe asthma.


Assuntos
Remodelação das Vias Aéreas , Aminoácido Oxirredutases/metabolismo , Asma , Remodelação das Vias Aéreas/fisiologia , Animais , Asma/metabolismo , Camundongos , Músculo Liso/patologia , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/farmacologia , Fator de Crescimento Transformador beta/metabolismo
3.
Molecules ; 26(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072733

RESUMO

Droplet microfluidics can produce highly tailored microparticles whilst retaining monodispersity. However, these systems often require lengthy optimisation, commonly based on a trial-and-error approach, particularly when using bio-instructive, polymeric surfactants. Here, micropipette manipulation methods were used to optimise the concentration of bespoke polymeric surfactants to produce biodegradable (poly(d,l-lactic acid) (PDLLA)) microparticles with unique, bio-instructive surface chemistries. The effect of these three-dimensional surfactants on the interfacial tension of the system was analysed. It was determined that to provide adequate stabilisation, a low level (0.1% (w/v)) of poly(vinyl acetate-co-alcohol) (PVA) was required. Optimisation of the PVA concentration was informed by micropipette manipulation. As a result, successful, monodisperse particles were produced that maintained the desired bio-instructive surface chemistry.


Assuntos
Portadores de Fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polímeros/química , Álcool de Polivinil/química , Tensoativos/química , Materiais Biocompatíveis/química , Biodegradação Ambiental , Composição de Medicamentos/métodos , Ácido Láctico/química , Microfluídica , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Ácido Poliglicólico/química , Solventes , Propriedades de Superfície , Tensão Superficial
4.
Eur Respir J ; 51(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29700102

RESUMO

Bronchial thermoplasty is a treatment for asthma. It is currently unclear whether its histopathological impact is sufficiently explained by the proportion of airway wall that is exposed to temperatures necessary to affect cell survival.Airway smooth muscle and bronchial epithelial cells were exposed to media (37-70°C) for 10 s to mimic thermoplasty. In silico we developed a mathematical model of airway heat distribution post-thermoplasty. In vivo we determined airway smooth muscle mass and epithelial integrity pre- and post-thermoplasty in 14 patients with severe asthma.In vitro airway smooth muscle and epithelial cell number decreased significantly following the addition of media heated to ≥65°C. In silico simulations showed a heterogeneous heat distribution that was amplified in larger airways, with <10% of the airway wall heated to >60°C in airways with an inner radius of ∼4 mm. In vivo at 6 weeks post-thermoplasty, there was an improvement in asthma control (measured via Asthma Control Questionnaire-6; mean difference 0.7, 95% CI 0.1-1.3; p=0.03), airway smooth muscle mass decreased (absolute median reduction 5%, interquartile range (IQR) 0-10; p=0.03) and epithelial integrity increased (14%, IQR 6-29; p=0.007). Neither of the latter two outcomes was related to improved asthma control.Integrated in vitro and in silico modelling suggest that the reduction in airway smooth muscle post-thermoplasty cannot be fully explained by acute heating, and nor did this reduction confer a greater improvement in asthma control.


Assuntos
Asma/terapia , Termoplastia Brônquica/métodos , Células Epiteliais/metabolismo , Modelos Biológicos , Músculo Liso/patologia , Adulto , Idoso , Remodelação das Vias Aéreas , Apoptose , Termoplastia Brônquica/efeitos adversos , Broncoscopia , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
5.
BMC Pediatr ; 18(1): 284, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30149807

RESUMO

BACKGROUND: The phenotypic and genetic heterogeneity of autism spectrum disorder (ASD) presents considerable challenges in understanding etiological pathways, selecting effective therapies, providing genetic counselling, and predicting clinical outcomes. With advances in genetic and biological research alongside rapid-pace technological innovations, there is an increasing imperative to access large, representative, and diverse cohorts to advance knowledge of ASD. To date, there has not been any single collective effort towards a similar resource in Australia, which has its own unique ethnic and cultural diversity. The Australian Autism Biobank was initiated by the Cooperative Research Centre for Living with Autism (Autism CRC) to establish a large-scale repository of biological samples and detailed clinical information about children diagnosed with ASD to facilitate future discovery research. METHODS: The primary group of participants were children with a confirmed diagnosis of ASD, aged between 2 and 17 years, recruited through four sites in Australia. No exclusion criteria regarding language level, cognitive ability, or comorbid conditions were applied to ensure a representative cohort was recruited. Both biological parents and siblings were invited to participate, along with children without a diagnosis of ASD, and children who had been queried for an ASD diagnosis but did not meet diagnostic criteria. All children completed cognitive assessments, with probands and parents completing additional assessments measuring ASD symptomatology. Parents completed questionnaires about their child's medical history and early development. Physical measurements and biological samples (blood, stool, urine, and hair) were collected from children, and physical measurements and blood samples were collected from parents. Samples were sent to a central processing site and placed into long-term storage. DISCUSSION: The establishment of this biobank is a valuable international resource incorporating detailed clinical and biological information that will help accelerate the pace of ASD discovery research. Recruitment into this study has also supported the feasibility of large-scale biological sample collection in children diagnosed with ASD with comprehensive phenotyping across a wide range of ages, intellectual abilities, and levels of adaptive functioning. This biological and clinical resource will be open to data access requests from national and international researchers to support future discovery research that will benefit the autistic community.


Assuntos
Transtorno do Espectro Autista/epidemiologia , Bancos de Espécimes Biológicos , Austrália , Transtorno do Espectro Autista/genética , Pesquisa Biomédica , Coleta de Amostras Sanguíneas , Criança , Pré-Escolar , Protocolos Clínicos , Fezes , Cabelo , Humanos , Fenótipo , Testes Psicológicos , Inquéritos e Questionários , Urinálise
6.
Anal Chem ; 89(1): 847-853, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27983789

RESUMO

We investigated the feasibility of using spatially offset Raman spectroscopy (SORS) for nondestructive characterization of bone tissue engineering scaffolds. The deep regions of these scaffolds, or scaffolds implanted subcutaneously in live animals, are typically difficult to measure by confocal Raman spectroscopy techniques because of the limited depth penetration of light caused by the high level of light scattering. Layered samples consisting of bioactive glass foams (IEIC16), three-dimensional (3D)-printed biodegradable poly(lactic-co-glycolic acid) scaffolds (PLGA), and hydroxyapatite powder (HA) were used to mimic nondestructive detection of biomineralization for intact real-size 3D tissue engineering constructs. SORS spectra were measured with a new SORS instrument using a digital micromirror device (DMD) to allow software selection of the spatial offsets. The results show that HA can be reliably detected at depths of 0-2.3 mm, which corresponds to the maximum accessible spatial offset of the current instrument. The intensity ratio of Raman bands associated with the scaffolds and HA with the spatial offset depended on the depth at which HA was located. Furthermore, we show the feasibility for in vivo monitoring mineralization of scaffold implanted subcutaneously by demonstrating the ability to measure transcutaneously Raman signals of the scaffolds and HA (fresh chicken skin used as a top layer). The ability to measure spectral depth profiles at high speed (5 s acquisition time) and the ease of implementation make SORS a promising approach for noninvasive characterization of cell/tissue development in vitro, and for long-term in vivo monitoring the mineralization in 3D scaffolds subcutaneously implanted in small animals.


Assuntos
Osso e Ossos/química , Durapatita/análise , Engenharia Tecidual , Materiais Biocompatíveis/análise , Ácido Láctico/química , Tamanho da Partícula , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Análise Espectral Raman
7.
Respir Res ; 16: 144, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26619903

RESUMO

BACKGROUND: Inflammatory respiratory diseases are amongst major global health challenges. Lung fibroblasts have been shown to play a key role in lung inflammatory responses. However, their exact role in initiation and maintenance of lung diseases has remained elusive partly due to the limited availability of physiologically relevant in vitro models. Therefore, developing new tools that enable investigating the molecular pathways (e.g. nuclear factor-kappa B (NF-κB) activation) that underpin inflammatory responses in fibroblasts could be a valuable resource for scientists working in this area of research. RESULTS: In order to investigate NF-κB activation in response to pro-inflammatory stimuli in real-time, we first developed two detection systems based on nuclear localization of NF-κB by immunostaining and luciferase reporter assay system. Furthermore using electrospun porous scaffolds, with similar geometry to human lung extracellular matrix, we developed 3D cultures of lung fibroblasts allowing comparing NF-κB activation in response to pro-inflammatory stimuli (i.e. TNF-α) in 2D and 3D. Our data clearly show that the magnitude of NF-κB activation in 2D cultures is substantially higher than 3D cultures. However, unlike 2D cultures, cells in the 3D model remained responsive to TNF-α at higher concentrations. The more subdued and wider dynamic range of NF-κB responses in 3D culture system was associated with a different expression pattern for TNF receptor I in 3D versus 2D cultures collectively reflecting a more in vivo like TNF receptor I expression and NF-κB activation pattern in the 3D system. CONCLUSION: Our data suggest that lung fibroblasts are actively involved in the pathogenesis of lung inflammation by activation of NF-κB signaling pathway. The 3D culture detection system provides a sensitive and biologically relevant tool for investigating different pro-inflammatory events involving lung fibroblasts.


Assuntos
Técnicas de Cultura de Células , Fibroblastos/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pneumonia/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Genes Reporter , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pneumonia/patologia , Receptores Tipo I de Fatores de Necrose Tumoral/agonistas , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Transcrição RelA/genética , Transfecção , Fator de Necrose Tumoral alfa/farmacologia
8.
Mol Pharm ; 11(7): 2082-91, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24628276

RESUMO

The development of more complex in vitro models for the assessment of novel drugs and chemicals is needed because of the limited biological relevance of animal models to humans as well as ethical considerations. Although some human-cell-based assays exist, they are usually 2D, consist of single cell type, and have limited cellular and functional representation of the native tissue. In this study, we have used biomimetic porous electrospun scaffolds to develop an immunocompetent 3D model of the human respiratory tract comprised of three key cell types present in upper airway epithelium. The three cell types, namely, epithelial cells (providing a physical barrier), fibroblasts (extracellular matrix production), and dendritic cells (immune sensing), were initially grown on individual scaffolds and then assembled into the 3D multicell tissue model. The epithelial layer was cultured at the air-liquid interface for up to four weeks, leading to formation of a functional barrier as evidenced by an increase in transepithelial electrical resistance (TEER) and tight junction formation. The response of epithelial cells to allergen exposure was monitored by quantifying changes in TEER readings and by assessment of cellular tight junctions using immunostaining. It was found that epithelial cells cocultured with fibroblasts formed a functional epithelial barrier at a quicker rate than single cultures of epithelial cells and that the recovery from allergen exposure was also more rapid. Also, our data show that dendritic cells within this model remain viable and responsive to external stimulation as evidenced by their migration within the 3D construct in response to allergen challenge. This model provides an easy to assemble and physiologically relevant 3D model of human airway epithelium that can be used for studies aiming at better understanding lung biology, the cross-talk between immune cells, and airborne allergens and pathogens as well as drug delivery.


Assuntos
Avaliação de Medicamentos/métodos , Preparações Farmacêuticas/administração & dosagem , Mucosa Respiratória/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Alérgenos/administração & dosagem , Biomimética/métodos , Linhagem Celular , Técnicas de Cocultura/métodos , Células Dendríticas/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Junções Íntimas/efeitos dos fármacos , Alicerces Teciduais
9.
Green Chem ; 26(3): 1345-1355, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38323306

RESUMO

Volumetric Additive Manufacturing (VAM) represents a revolutionary advancement in the field of Additive Manufacturing, as it allows for the creation of objects in a single, cohesive process, rather than in a layer-by-layer approach. This innovative technique offers unparalleled design freedom and significantly reduces printing times. A current limitation of VAM is the availability of suitable resins with the required photoreactive chemistry and from sustainable sources. To support the application of this technology, we have developed a sustainable resin based on polyglycerol, a bioderived (e.g., vegetable origin), colourless, and easily functionisable oligomer produced from glycerol. To transform polyglycerol-6 into an acrylate photo-printable resin we adopted a simple, one-step, and scalable synthesis route. Polyglycerol-6-acrylate fulfils all the necessary criteria for volumetric printing (transparency, photo-reactivity, viscosity) and was successfully used to print a variety of models with intricate geometries and good resolution. The waste resin was found to be reusable with minimal performance issues, improving resin utilisation and minimising waste material. Furthermore, by incorporating dopants such as poly(glycerol) adipate acrylate (PGA-A) and 10,12-pentacosadyinoic acid (PCDA), we demonstrated the ability to print objects with a diverse range of functionalities, including temperature sensing probes and a polyester excipient, highlighting the potential applications of these new resins.

10.
Biochem Biophys Res Commun ; 432(1): 28-33, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23376713

RESUMO

Adiponectin is a beneficial adipokine with insulin-sensitizing, anti-inflammatory and anti-atherogenic effects. These effects are mediated by two poorly characterised, closely related, atypical seven-transmembrane receptors. In the current report we have used C-terminal, epitope-tagged AdipoR1 and AdipoR2 constructs to monitor cell-surface expression by indirect immunofluorescence microscopy and quantitative plate-based analysis. We demonstrate that only AdipoR1 is constitutively expressed on the cell-surface. Further investigations, involving characterisation of a number of chimeric and truncated constructs, show the non-conserved region of AdipoR2 (residues 1-81) restricts its cell-surface expression. Introduction or deletion of this region, into AdipoR1 or AdipoR2, resulted in inhibition or promotion of cell-surface expression, respectively. We also confirmed that AdipoR1 and AdipoR2 can form heterodimers when co-expressed and that co-expression leads to the cell-surface expression of AdipoR2. Collectively these studies demonstrate that the non-conserved region of AdipoR2 restricts its cell-surface expression and raise the possibility that the majority of cell-surface AdipoR2 may be present in the form of heterodimers.


Assuntos
Membrana Celular/metabolismo , Receptores de Adiponectina/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Humanos , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Terciária de Proteína , Receptores de Adiponectina/genética , Proteínas Recombinantes de Fusão/metabolismo
11.
Can J Physiol Pharmacol ; 91(6): 496-501, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23746304

RESUMO

There has been substantial recent interest in using vitamin D to improve insulin sensitivity and preventing/delaying diabetes in those at risk. There is little consensus on the physiological mechanisms and whether the association is direct or indirect through enhanced production of insulin-sensitising chemicals, including adiponectin. We examined cross-sectional associations between serum 25-hydroxyvitamin D (25(OH)D) and insulin sensitivity (Matsuda index), parathyroid hormone (PTH), waist circumference, body mass index (BMI), triglycerides (TG), total and high molecular weight (HMW) adiponectin, HMW : total adiponectin ratio (HMW : total adiponectin), and total cholesterol : HDL cholesterol ratio (TC:HDL cholesterol) in 137 Caucasian adults of mean age 43.3 ± 8.3 years and BMI 38.8 ± 6.9 kg/m(2). Total adiponectin (standardised ß = 0.446; p < 0.001), waist circumference (standardised ß = -0.216; p < 0.05), BMI (standardised ß = -0.212; p < 0.05), and age (standardised ß = -0.298; p < 0.001) were independently associated with insulin sensitivity. Serum 25(OH)D (standardised ß = 0.114; p = 0.164) was not associated with insulin sensitivity, total or HMW adiponectin, HMW : total adiponectin, or lipids. Our results provide the novel finding that 25(OH)D is not associated with HMW adiponectin or HMW : total adiponectin in nondiabetic, obese adults and support the lack of association between 25(OH)D and lipids noted by others in similar groups of patients.


Assuntos
Adiponectina/sangue , Resistência à Insulina , Insulina/sangue , Obesidade/sangue , Vitamina D/análogos & derivados , Adulto , Glicemia/análise , Índice de Massa Corporal , Colesterol/sangue , Estudos Transversais , Feminino , Humanos , Masculino , Análise Multivariada , Obesidade/metabolismo , Triglicerídeos/sangue , Vitamina D/sangue
12.
Spec Care Dentist ; 43(1): 17-28, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35654391

RESUMO

AIMS: Children diagnosed with autism spectrum disorder may be at higher likelihood of experiencing poorer oral health and difficulties accessing dental health care. However, identifying which children on the autism spectrum may be more vulnerable to experiencing dental care difficulties is still unknown. This study investigated parental reports of oral health and dental service needs of children diagnosed with autism and explored relationships with clinical phenotypes. METHODS AND RESULTS: Participants (n = 140) were parents of children on the autism spectrum who had participated in a large national biobank study, the Australian Autism Biobank, invited to complete additional surveys about oral health, service use, and barriers to care. One third of parents reported their child's oral health was worse than other children the same age, with 26% reporting untreated dental problems. A third of children were reported to have undergone general anaesthesia at least once for dental procedures. Children who had undergone general anaesthesia were more likely to have intellectual disability and greater functional difficulties. Parents of children with greater functional limitations and sensory challenges reported experiencing barriers to accessing dental care more frequently. CONCLUSION: These results have important implications for paediatric dentists working with children diagnosed with autism with co-occurring intellectual, functional, and sensory challenges. Findings may inform the development of more personalised autism-specific supports.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Saúde Bucal , Criança , Humanos , Austrália , Assistência Odontológica , Pais , Fenótipo , Acessibilidade aos Serviços de Saúde
13.
Adv Exp Med Biol ; 745: 47-57, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22437812

RESUMO

The field of tissue engineering is generating new scaffolds, bioreactors and methods for stimulating cells within complex cultures, with the aim of recreating the conditions under which cells form functional tissues. Hitherto, the primary focus of this field has been on clinical applications. However, there are many methods of in vitro tissue engineering that represent new opportunities in 3D cell culture and could be the basis for new replacement methods that either replace the use of a tissue isolated from an animal or the use of a living animal. This chapter presents an overview of tissue engineering and provides tissue-specific examples of recent advances.


Assuntos
Engenharia Tecidual/métodos , Humanos , Especificidade de Órgãos , Alicerces Teciduais
14.
Front Bioeng Biotechnol ; 10: 836386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832405

RESUMO

Design and fabrication of implants that can perform better than autologous bone grafts remain an unmet challenge for the hard tissue regeneration in craniomaxillofacial applications. Here, we report an integrated approach combining additive manufacturing with supramolecular chemistry to develop acellular mineralizing 3D printed scaffolds for hard tissue regeneration. Our approach relies on an elastin-like recombinamer (ELR) coating designed to trigger and guide the growth of ordered apatite on the surface of 3D printed nylon scaffolds. Three test samples including a) uncoated nylon scaffolds (referred to as "Uncoated"), b) ELR coated scaffolds (referred to as "ELR only"), and c) ELR coated and in vitro mineralized scaffolds (referred to as "Pre-mineralized") were prepared and tested for in vitro and in vivo performance. All test samples supported normal human immortalized mesenchymal stem cell adhesion, growth, and differentiation with enhanced cell proliferation observed in the "Pre-mineralized" samples. Using a rabbit calvarial in vivo model, 'Pre-mineralized' scaffolds also exhibited higher bone ingrowth into scaffold pores and cavities with higher tissue-implant integration. However, the coated scaffolds ("ELR only" and "Pre-mineralized") did not exhibit significantly more new bone formation compared to "Uncoated" scaffolds. Overall, the mineralizing coating offers an opportunity to enhance integration of 3D printed bone implants. However, there is a need to further decipher and tune their immunologic response to develop truly osteoinductive/conductive surfaces.

15.
Biomaterials ; 281: 121350, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35033903

RESUMO

Chronic infection as a result of bacterial biofilm formation on implanted medical devices is a major global healthcare problem requiring new biocompatible, biofilm-resistant materials. Here we demonstrate how bespoke devices can be manufactured through ink-jet-based 3D printing using bacterial biofilm inhibiting formulations without the need for eluting antibiotics or coatings. Candidate monomers were formulated and their processability and reliability demonstrated. Formulations for in vivo evaluation of the 3D printed structures were selected on the basis of their in vitro bacterial biofilm inhibitory properties and lack of mammalian cell cytotoxicity. In vivo in a mouse implant infection model, Pseudomonas aeruginosa biofilm formation on poly-TCDMDA was reduced by ∼99% when compared with medical grade silicone. Whole mouse bioluminescence imaging and tissue immunohistochemistry revealed the ability of the printed device to modulate host immune responses as well as preventing biofilm formation on the device and infection of the surrounding tissues. Since 3D printing can be used to manufacture devices for both prototyping and clinical use, the versatility of ink-jet based 3D-printing to create personalised functional medical devices is demonstrated by the biofilm resistance of both a finger joint prosthetic and a prostatic stent printed in poly-TCDMDA towards P. aeruginosa and Staphylococcus aureus.


Assuntos
Biofilmes , Tinta , Animais , Bactérias , Materiais Biocompatíveis/química , Mamíferos , Camundongos , Impressão Tridimensional , Pseudomonas aeruginosa , Reprodutibilidade dos Testes , Staphylococcus aureus
16.
Gen Comp Endocrinol ; 172(3): 468-74, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21530529

RESUMO

Adiponectin is a key adipokine that regulates carbohydrate and lipid metabolism. It circulates in stable low (LMW) and high molecular weight (HMW) forms. The aims of this study were to characterize baseline adiponectin profiles (total, LMW and HMW multimers) in healthy cats and to assess the effects of varying dietary carbohydrate content on adiponectin profiles. Cats were maintained on a diet with moderate carbohydrate content (37% metabolisable energy [ME]) for 4 weeks and then randomly allocated to either a low carbohydrate (19% ME) or high carbohydrate (52% ME) diet for 4 weeks. Fasting and postprandial plasma adiponectin profiles were measured by ELISA and sucrose gradient/Western blot. After consuming the moderate carbohydrate diet for 4 weeks, fasting total, HMW and LMW plasma adiponectin concentrations were 5.0±0.6, 2.5±0.5 and 2.6±0.2 µg/mL, respectively. After changing to the low carbohydrate diet, fasting total adiponectin was unchanged but HMW adiponectin increased and LMW adiponectin decreased. No significant postprandial changes were observed. Cats consuming the high carbohydrate diet had increased fasting total and LMW adiponectin with no change in HMW adiponectin. In the postprandial state total adiponectin was reduced and there was a trend towards a decrease in HMW (p=0.086) but not LMW multimers. These data indicate that feline adiponectin multimer profiles are similar to those reported in other species and demonstrate that changes in plasma adiponectin occur in response to chronic and acute carbohydrate intake and these reflect differential changes in adiponectin multimers.


Assuntos
Adiponectina/sangue , Gatos/metabolismo , Carboidratos da Dieta/metabolismo , Adiponectina/química , Animais , Glicemia/metabolismo , Feminino , Insulina/sangue , Masculino
17.
Nanoscale ; 13(23): 10266-10280, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34085085

RESUMO

The application of nanotechnology to regenerative medicine has increased over recent decades. The development of materials that can influence biology at the nanoscale has gained interest as our understanding of the interactions between cells and biomaterials at the nanoscale has grown. Materials that are either nanostructured or influence the nanostructure of the cellular microenvironment have been developed and shown to have advantages over their microscale counterparts. There are several reviews which have been published that discuss how nanomaterials have been used in regenerative medicine, particularly in bone regeneration. Most of these studies have explored this concept in specific areas, such as the application of glass-based nanocomposites, nanotechnology for targeted drug delivery to stimulate bone repair, and the progress in nanotechnology for the treatment of osteoporosis. In this review paper, the impact of nanotechnology in biomaterials development for bone regeneration will be discussed highlighting specifically, nanostructured materials that influence mechanical properties, biocompatibility, and osteoinductivity.


Assuntos
Nanoestruturas , Engenharia Tecidual , Materiais Biocompatíveis , Regeneração Óssea , Nanotecnologia , Medicina Regenerativa
18.
J Mater Chem B ; 9(20): 4120-4133, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33982048

RESUMO

Effective regenerative medicine requires delivery systems which can release multiple components at appropriate levels and at different phases of tissue growth and repair. However, there are few biomaterials and encapsulation techniques that are fully suitable for the loading and controlled release of multiple proteins. In this study we describe how proteins were physically and chemically loaded into a single coaxial electrospun fibre scaffold to obtain bi-phasic release profiles. Cyto-compatible polymers were used to construct the scaffold, using polyethylene oxide (PEO) for the core and polycaprolactone (PCL) reacted or mixed with (bis-aminopropyl)polyether (Jeffamine ED2003; JFA) for the shell. Horseradish peroxidase (HRP), a model protein, was loaded in the core and functionalised onto the scaffold surface by coupling of protein carboxyl groups to the available polymer amine groups. Fibre morphologies were evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and functional group content was determined using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF SIMS). Hydrophobicity profiles of the fibres before and after protein loading were evaluated by water contact angle (WCA) and the mechanical properties of the electrospun scaffolds were determined by performing tensile tests. The electrospun fibre scaffolds generated by reacting PEO/PCL with 1,6-diaminohexane and those from mixing PEO/PCL with JFA were further characterised for protein conjugation and release. Fibres prepared by the mixed PEO/PCL/JFA system were found to be the most appropriate for the simultaneous release of protein from the core and the immobilisation of another protein on the shell of the same scaffold. Moreover, JFA enhanced scaffold properties in terms of porosity and elasticity. Finally, we successfully demonstrated the cytocompatibility and cell response to protein-loaded and -conjugated scaffolds using HepG2 cells. Enhanced cell attachment (2.5 fold) was demonstrated using bovine serum albumin (BSA)-conjugated scaffolds, and increased metabolic activity observed with retinoic acid (RA)-loaded scaffolds (2.7 fold).


Assuntos
Materiais Biocompatíveis/química , Polímeros/química , Soroalbumina Bovina/química , Alicerces Teciduais/química , Animais , Bovinos , Células Hep G2 , Humanos , Tamanho da Partícula , Propriedades de Superfície , Engenharia Tecidual
19.
ACS Appl Mater Interfaces ; 13(33): 38969-38978, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34399054

RESUMO

Controlling the microstructure of materials by means of phase separation is a versatile tool for optimizing material properties. Phase separation has been exploited to fabricate intricate microstructures in many fields including cell biology, tissue engineering, optics, and electronics. The aim of this study was to use phase separation to tailor the spatial location of drugs and thereby generate release profiles of drug payload over periods ranging from 1 week to months by exploiting different mechanisms: polymer degradation, polymer diluent dissolution, and control of microstructure. To achieve this, we used drop-on-demand inkjet three-dimensional (3D) printing. We predicted the microstructure resulting from phase separation using high-throughput screening combined with a model based on the Flory-Huggins interaction parameter and were able to show that drug release from 3D-printed objects can be predicted from observations based on single drops of mixtures. We demonstrated for the first time that inkjet 3D printing yields controllable phase separation using picoliter droplets of blended photoreactive oligomers/monomers. This new understanding gives us hierarchical compositional control, from droplet to device, allowing release to be "dialled up" without manipulation of device geometry. We exemplify this approach by fabricating a biodegradable, long-term, multiactive drug delivery subdermal implant ("polyimplant") for combination therapy and personalized treatment of coronary heart disease. This is an important advance for implants that need to be delivered by cannula, where the shape is highly constrained and thus the usual geometrical freedoms associated with 3D printing cannot be easily exploited, which brings a hitherto unseen level of understanding to emergent material properties of 3D printing.


Assuntos
Anti-Hipertensivos/química , Doença das Coronárias/tratamento farmacológico , Portadores de Fármacos/química , Excipientes/química , Indóis/química , Polímeros/química , Anti-Hipertensivos/farmacologia , Dioxanos/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Indóis/farmacologia , Metacrilatos/química , Transição de Fase , Poliésteres/química , Impressão Tridimensional , Pirrolidinonas/química , Relação Estrutura-Atividade
20.
Biomaterials ; 271: 120740, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33714019

RESUMO

Human mesenchymal stem cells (hMSCs) are widely represented in regenerative medicine clinical strategies due to their compatibility with autologous implantation. Effective bone regeneration involves crosstalk between macrophages and hMSCs, with macrophages playing a key role in the recruitment and differentiation of hMSCs. However, engineered biomaterials able to simultaneously direct hMSC fate and modulate macrophage phenotype have not yet been identified. A novel combinatorial chemistry-topography screening platform, the ChemoTopoChip, is used here to identify materials suitable for bone regeneration by screening 1008 combinations in each experiment for human immortalized mesenchymal stem cell (hiMSCs) and human macrophage response. The osteoinduction achieved in hiMSCs cultured on the "hit" materials in basal media is comparable to that seen when cells are cultured in osteogenic media, illustrating that these materials offer a materials-induced alternative to osteo-inductive supplements in bone-regeneration. Some of these same chemistry-microtopography combinations also exhibit immunomodulatory stimuli, polarizing macrophages towards a pro-healing phenotype. Maximum control of cell response is achieved when both chemistry and topography are recruited to instruct the required cell phenotype, combining synergistically. The large combinatorial library allows us for the first time to probe the relative cell-instructive roles of microtopography and material chemistry which we find to provide similar ranges of cell modulation for both cues. Machine learning is used to generate structure-activity relationships that identify key chemical and topographical features enhancing the response of both cell types, providing a basis for a better understanding of cell response to micro topographically patterned polymers.


Assuntos
Materiais Biocompatíveis , Células-Tronco Mesenquimais , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Diferenciação Celular , Humanos , Osteogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA