Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Sport Nutr Exerc Metab ; 33(6): 305-315, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567573

RESUMO

Endurance exercise can disturb intestinal epithelial integrity, leading to increased systemic indicators of cell injury, hyperpermeability, and pathogenic translocation. However, the interaction between exercise, diet, and gastrointestinal disturbance still warrants exploration. This study examined whether a 6-day dietary intervention influenced perturbations to intestinal epithelial disruption in response to a 25-km race walk. Twenty-eight male race walkers adhered to a high carbohydrate (CHO)/energy diet (65% CHO, energy availability = 40 kcal·kg FFM-1·day-1) for 6 days prior to a Baseline 25-km race walk. Athletes were then split into three subgroups: high CHO/energy diet (n = 10); low-CHO, high-fat diet (LCHF: n = 8; <50 g/day CHO, energy availability = 40 kcal·kg FFM-1·day-1); and low energy availability (n = 10; 65% CHO, energy availability = 15 kcal·kg FFM-1·day-1) for a further 6-day dietary intervention period prior to a second 25-km race walk (Adaptation). During both trials, venous blood was collected pre-, post-, and 1 hr postexercise and analyzed for markers of intestinal epithelial disruption. Intestinal fatty acid-binding protein concentration was significantly higher (twofold increase) in response to exercise during Adaptation compared to Baseline in the LCHF group (p = .001). Similar findings were observed for soluble CD14 (p < .001) and lipopolysaccharide-binding protein (p = .003), where postexercise concentrations were higher (53% and 36%, respectively) during Adaptation than Baseline in LCHF. No differences in high CHO/energy diet or low energy availability were apparent for any blood markers assessed (p > .05). A short-term LCHF diet increased intestinal epithelial cell injury in response to a 25-km race walk. No effect of low energy availability on gastrointestinal injury or symptoms was observed.


Assuntos
Dieta Cetogênica , Gastroenteropatias , Humanos , Masculino , Dieta Hiperlipídica , Exercício Físico , Carboidratos , Biomarcadores , Carboidratos da Dieta
2.
Int J Sport Nutr Exerc Metab ; 32(3): 177-185, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942595

RESUMO

Previous research investigating single bouts of exercise have identified baseline iron status and circulating concentrations of interleukin-6 (IL-6) as contributors to the magnitude of postexercise hepcidin increase. The current study examined the effects of repeated training bouts in close succession on IL-6 and hepcidin responses. In a randomized, crossover design, 16 elite male rowers completed two trials, a week apart, with either high (1,000 mg) or low (<50 mg) calcium pre-exercise meals. Each trial involved two, submaximal 90-min rowing ergometer sessions, 2.5 hr apart, with venous blood sampled at baseline; pre-exercise; and 0, 1, 2, and 3 hr after each session. Peak elevations in IL-6 (approximately 7.5-fold, p < .0001) and hepcidin (approximately threefold, p < .0001) concentrations relative to baseline were seen at 2 and 3 hr after the first session, respectively. Following the second session, concentrations of both IL-6 and hepcidin remained elevated above baseline, exhibiting a plateau rather than an additive increase (2 hr post first session vs. 2 hr post second session, p = 1.00). Pre-exercise calcium resulted in a slightly greater elevation in hepcidin across all time points compared with control (p = .0005); however, no effect on IL-6 was evident (p = .27). Performing multiple submaximal training sessions in close succession with adequate nutritional support does not result in an amplified increase in IL-6 or hepcidin concentrations following the second session in male elite rowers. Although effects of calcium intake require further investigation, athletes should continue to prioritize iron consumption around morning exercise prior to exercise-induced hepcidin elevations to maximize absorption.


Assuntos
Hepcidinas , Interleucina-6 , Atletas , Cálcio , Estudos Cross-Over , Humanos , Ferro , Masculino
3.
J Physiol ; 599(3): 771-790, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32697366

RESUMO

KEY POINTS: Brief (5-6 days) adaptation to a low carbohydrate high fat diet in elite athletes increased exercise fat oxidation to rates previously observed with medium (3-4 weeks) or chronic (>12 months) adherence to this diet, with metabolic changes being washed out in a similar time frame. Increased fat utilisation during exercise was associated with a 5-8% increase in oxygen cost at speeds related to Olympic Programme races. Acute restoration of endogenous carbohydrate (CHO) availability (24 h high CHO diet, pre-race CHO) only partially restored substrate utilisation during a race warm-up. Fat oxidation continued to be elevated above baseline values although it was lower than achieved by 5-6 days' keto adaptation; CHO oxidation only reached 61% and 78% of values previously seen at exercise intensities related to race events. Acute restoration of CHO availability failed to overturn the impairment of high-intensity endurance performance previously associated with low carbohydrate high fat adaptation, potentially due to the blunted capacity for CHO oxidation. ABSTRACT: We investigated substrate utilisation during exercise after brief (5-6 days) adaptation to a ketogenic low-carbohydrate (CHO), high-fat (LCHF) diet and similar washout period. Thirteen world-class male race walkers completed economy testing, 25 km training and a 10,000 m race (Baseline), with high CHO availability (HCHO), repeating this (Adaptation) after 5-6 days' LCHF (n = 7; CHO: <50 g day-1 , protein: 2.2 g kg-1 day-1 ; 80% fat) or HCHO (n = 6; CHO: 9.7 g kg-1 day-1 ; protein: 2.2 g kg-1 day-1 ) diet. An Adaptation race was undertaken after 24 h HCHO and pre-race CHO (2 g kg-1 ) diet, identical to the Baseline race. Substantial (>200%) increases in exercise fat oxidation occurred in the LCHF Adaptation economy and 25 km tests, reaching mean rates of ∼1.43 g min-1 . However, relative V̇O2 (ml min-1  kg-1 ) was higher (P < 0.0001), by ∼8% and 5% at speeds related to 50 km and 20 km events. During Adaptation race warm-up in the LCHF group, rates of fat and CHO oxidation at these speeds were decreased and increased, respectively (P < 0.001), compared with the previous day, but were not restored to Baseline values. Performance changes differed between groups (P = 0.009), with all HCHO athletes improving in the Adaptation race (5.7 (5.6)%), while 6/7 LCHF athletes were slower (2.2 (3.4)%). Substrate utilisation returned to Baseline values after 5-6 days of HCHO diet. In summary, robust changes in exercise substrate use occurred in 5-6 days of extreme changes in CHO intake. However, adaptation to a LCHF diet plus acute restoration of endogenous CHO availability failed to restore high-intensity endurance performance, with CHO oxidation rates remaining blunted.


Assuntos
Dieta Hiperlipídica , Glicogênio , Adaptação Fisiológica , Dieta com Restrição de Carboidratos , Carboidratos da Dieta , Humanos , Masculino , Resistência Física
4.
Int J Sport Nutr Exerc Metab ; 31(1): 40-45, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248439

RESUMO

Menthol is effective at stimulating thermosensitive neurons that evoke pleasant cooling sensations. Internal application of menthol can be ergogenic for athletes, and hence, addition of menthol to sports nutrition products may be beneficial for athletes. The aim of this study was to develop a menthol energy gel for consumption during exercise and to determine acceptability and preferences for gels with different menthol concentrations. With a randomized, crossover, and double-blind placebo-controlled design, 40 endurance athletes (20 females) ingested an energy gel with a menthol additive at a high (0.5%; HIGH) or low concentration (0.1%; LOW), or a mint-flavored placebo (CON), on separate occasions during outdoor endurance training sessions. The athletes rated the gels for cooling sensation, mint flavor intensity, sweetness, and overall experience and provided feedback. Results are reported as median (interquartile range). Both menthol gels successfully delivered a cooling sensation, with a significantly greater response for HIGH (5.0 [4.0-5.0]) compared with LOW (3.5 [3.0-4.0]; p = .022) and CON (1.0 [1.0-2.0]; p < .0005), and LOW compared with CON (p < .0005). Ratings of mint flavor intensity followed the same trend as cooling sensation, while ratings of overall experience were significantly worse for HIGH (2.0 [1.0-3.0]) compared with LOW (4.0 [2.0-4.0]; p = .001) and CON (4.0 [3.0-4.0]; p < .0005). An energy gel with the addition of menthol at 0.1-0.5% provides a cooling sensation for athletes with a dose-response when ingested during exercise. The 0.1% concentration is recommended to maximize the overall experience of the gel.


Assuntos
Comportamento do Consumidor , Treino Aeróbico , Exercício Físico/fisiologia , Mentol/administração & dosagem , Substâncias para Melhoria do Desempenho/administração & dosagem , Sensação Térmica/efeitos dos fármacos , Estudos Cross-Over , Método Duplo-Cego , Feminino , Géis , Humanos , Masculino , Paladar
5.
Int J Sport Nutr Exerc Metab ; 31(1): 9-12, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33260142

RESUMO

The ingestion of quinine, a bitter tastant, improves short-term (30 s) cycling performance, but it is unclear whether this effect can be integrated into the last effort of a longer race. The purpose of this study was to determine whether midtrial quinine ingestion improves 3,000-m cycling time-trial (TT) performance. Following three familiarization TTs, 12 well-trained male cyclists (mean ± SD: mass = 76.6 ± 9.2 kg, maximal aerobic power = 390 ± 50 W, maximal oxygen uptake = 4.7 ± 0.6 L/min) performed four experimental 3,000-m TTs on consecutive days. This double-blind, crossover design study had four randomized and counterbalanced conditions: (a) Quinine 1 (25-ml solution, 2 mM of quinine); (b) Quinine 2, replicate of Quinine 1; (c) a 25-ml sweet-tasting no-carbohydrate solution (Placebo); and (d) 25 ml of water (Control) consumed at the 1,850-m point of the TT. The participants completed a series of perceptual scales at the start and completion of all TTs, and the power output was monitored continuously throughout all trials. The power output for the last 1,000 m for all four conditions was similar: mean ± SD: Quinine 1 = 360 ± 63 W, Quinine 2 = 367 ± 63 W, Placebo = 364 ± 64 W, and Control = 367 ± 58 W. There were also no differences in the 3,000-m TT power output between conditions. The small perceptual differences between trials at specific 150-m splits were not explained by quinine intake. Ingesting 2 mM of quinine during the last stage of a 3,000-m TT did not improve cycling performance.


Assuntos
Ciclismo/fisiologia , Substâncias para Melhoria do Desempenho/administração & dosagem , Resistência Física/efeitos dos fármacos , Quinina/administração & dosagem , Administração Oral , Estudos Cross-Over , Método Duplo-Cego , Humanos , Masculino , Percepção/fisiologia , Esforço Físico/fisiologia , Soluções
6.
Int J Sport Nutr Exerc Metab ; 31(2): 101-108, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33383570

RESUMO

This study implemented a 2-week high carbohydrate (CHO) diet intended to maximize CHO oxidation rates and examined the iron-regulatory response to a 26-km race walking effort. Twenty international-level, male race walkers were assigned to either a novel high CHO diet (MAX = 10 g/kg body mass CHO daily) inclusive of gut-training strategies, or a moderate CHO control diet (CON = 6 g/kg body mass CHO daily) for a 2-week training period. The athletes completed a 26-km race walking test protocol before and after the dietary intervention. Venous blood samples were collected pre-, post-, and 3 hr postexercise and measured for serum ferritin, interleukin-6, and hepcidin-25 concentrations. Similar decreases in serum ferritin (17-23%) occurred postintervention in MAX and CON. At the baseline, CON had a greater postexercise increase in interleukin-6 levels after 26 km of walking (20.1-fold, 95% CI [9.2, 35.7]) compared with MAX (10.2-fold, 95% CI [3.7, 18.7]). A similar finding was evident for hepcidin levels 3 hr postexercise (CON = 10.8-fold, 95% CI [4.8, 21.2]; MAX = 8.8-fold, 95% CI [3.9, 16.4]). Postintervention, there were no substantial differences in the interleukin-6 response (CON = 13.6-fold, 95% CI [9.2, 20.5]; MAX = 11.2-fold, 95% CI [6.5, 21.3]) or hepcidin levels (CON = 7.1-fold, 95% CI [2.1, 15.4]; MAX = 6.3-fold, 95% CI [1.8, 14.6]) between the dietary groups. Higher resting serum ferritin (p = .004) and hotter trial ambient temperatures (p = .014) were associated with greater hepcidin levels 3 hr postexercise. Very high CHO diets employed by endurance athletes to increase CHO oxidation have little impact on iron regulation in elite athletes. It appears that variations in serum ferritin concentration and ambient temperature, rather than dietary CHO, are associated with increased hepcidin concentrations 3 hr postexercise.


Assuntos
Carboidratos da Dieta/administração & dosagem , Ferro/sangue , Resistência Física/fisiologia , Esportes/fisiologia , Caminhada/fisiologia , Adulto , Carboidratos da Dieta/metabolismo , Ferritinas/sangue , Hepcidinas/sangue , Humanos , Interleucina-6/sangue , Masculino , Oxirredução , Condicionamento Físico Humano/fisiologia , Temperatura
7.
Int J Sport Nutr Exerc Metab ; 30(1): 83-98, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31891914

RESUMO

It is the position of Sports Dietitians Australia (SDA) that exercise in hot and/or humid environments, or with significant clothing and/or equipment that prevents body heat loss (i.e., exertional heat stress), provides significant challenges to an athlete's nutritional status, health, and performance. Exertional heat stress, especially when prolonged, can perturb thermoregulatory, cardiovascular, and gastrointestinal systems. Heat acclimation or acclimatization provides beneficial adaptations and should be undertaken where possible. Athletes should aim to begin exercise euhydrated. Furthermore, preexercise hyperhydration may be desirable in some scenarios and can be achieved through acute sodium or glycerol loading protocols. The assessment of fluid balance during exercise, together with gastrointestinal tolerance to fluid intake, and the appropriateness of thirst responses provide valuable information to inform fluid replacement strategies that should be integrated with event fuel requirements. Such strategies should also consider fluid availability and opportunities to drink, to prevent significant under- or overconsumption during exercise. Postexercise beverage choices can be influenced by the required timeframe for return to euhydration and co-ingestion of meals and snacks. Ingested beverage temperature can influence core temperature, with cold/icy beverages of potential use before and during exertional heat stress, while use of menthol can alter thermal sensation. Practical challenges in supporting athletes in teams and traveling for competition require careful planning. Finally, specific athletic population groups have unique nutritional needs in the context of exertional heat stress (i.e., youth, endurance/ultra-endurance athletes, and para-sport athletes), and specific adjustments to nutrition strategies should be made for these population groups.


Assuntos
Desempenho Atlético/fisiologia , Exercício Físico/fisiologia , Transtornos de Estresse por Calor/prevenção & controle , Temperatura Alta , Fenômenos Fisiológicos da Nutrição Esportiva , Aclimatação , Austrália , Regulação da Temperatura Corporal , Vestuário , Comportamento Competitivo/fisiologia , Desidratação/fisiopatologia , Desidratação/prevenção & controle , Hidratação , Trato Gastrointestinal/fisiopatologia , Transtornos de Estresse por Calor/fisiopatologia , Humanos , Umidade , Necessidades Nutricionais , Equilíbrio Hidroeletrolítico
8.
J Sports Sci ; 37(5): 553-559, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30207506

RESUMO

Carbohydrate (CHO) availability could alter mucosal immune responses to exercise. This study compared the effect of three dietary approaches to CHO availability on resting and post-exercise s-IgA levels. Elite race walkers (n = 26) adhered to a high CHO diet (HCHO), periodised CHO availability (PCHO) or a low CHO/high fat diet (LCHF) for 3 weeks while completing an intensified training program. HCHO and PCHO groups consumed 8.0-8.5 g.kg-1 CHO daily, with timing of ingestion manipulated to alter CHO availability around key training sessions. The LCHF diet comprised 80% fat and restricted CHO to < 50 g.day-1. A race walk test protocol (19 km females, 25 km males) was completed at baseline, after adaptation, and following CHO restoration. On each occasion, saliva samples were obtained pre- and post-exercise to quantify s-IgA levels. Resting s-IgA secretion rate substantially increased ~ two-fold post-intervention in all groups (HCHO: 2.2 ± 2.2, PCHO: 2.8 ± 3.2, LCHF: 1.6 ± 1.6; fold-change± 95% confidence limits), however, no substantial differences between dietary treatments were evident. Post-exercise, substantial 20-130% increases in s-IgA concentration and 43-64% reductions in flow rate occurred in all dietary treatments, with trivial differences evident between groups. It appears that high volume training overrides any effect of manipulating CHO availability on mucosal immunity in elite athletes.


Assuntos
Carboidratos da Dieta/administração & dosagem , Imunidade nas Mucosas , Resistência Física/imunologia , Caminhada/fisiologia , Adulto , Dieta da Carga de Carboidratos , Dieta com Restrição de Carboidratos , Dieta Hiperlipídica , Feminino , Humanos , Imunoglobulina A Secretora/metabolismo , Masculino , Condicionamento Físico Humano , Saliva/metabolismo , Adulto Jovem
9.
Int J Sport Nutr Exerc Metab ; 29(6): 664-670, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31592623

RESUMO

PURPOSE: To determine the acute effects of carbohydrate (CHO) ingestion following a bout of maximal eccentric resistance exercise on key anabolic kinases of mammalian target of rapamycin and extracellular signal-regulated kinase (ERK) pathways. The authors' hypothesis was that the activation of anabolic signaling pathways known to be upregulated by resistance exercise would be further stimulated by the physiological hyperinsulinemia resulting from CHO supplementation. METHODS: Ten resistance-trained men were randomized in a crossover, double-blind, placebo (PLA)-controlled manner to ingest either a noncaloric PLA or 3 g/kg of CHO beverage throughout recovery from resistance exercise. Muscle biopsies were collected at rest, immediately after a single bout of intense lower body resistance exercise, and after 3 hr of recovery. RESULTS: CHO ingestion elevated plasma glucose and insulin concentrations throughout recovery compared with PLA ingestion. The ERK pathway (phosphorylation of ERK1/2 [Thr202/Tyr204], RSK [Ser380], and p70S6K [Thr421/Ser424]) was markedly activated immediately after resistance exercise, without any effect of CHO supplementation. The phosphorylation state of AKT (Thr308) was unchanged postexercise in the PLA trial and increased at 3 hr of recovery above resting with ingestion of CHO compared with PLA. Despite stimulating-marked phosphorylation of AKT, CHO ingestion did not enhance resistance exercise-induced phosphorylation of p70S6K (Thr389) and rpS6 (Ser235/236 and Ser240/244). CONCLUSION: CHO supplementation after resistance exercise and hyperinsulinemia does not influence the ERK pathway nor the mTORC1 target p70S6K and its downstream proteins, despite the increased AKT phosphorylation.


Assuntos
Carboidratos da Dieta/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Treinamento Resistido , Glicemia/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Humanos , Insulina/sangue , Masculino , Adulto Jovem
10.
J Physiol ; 595(9): 2785-2807, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28012184

RESUMO

KEY POINTS: Three weeks of intensified training and mild energy deficit in elite race walkers increases peak aerobic capacity independent of dietary support. Adaptation to a ketogenic low carbohydrate, high fat (LCHF) diet markedly increases rates of whole-body fat oxidation during exercise in race walkers over a range of exercise intensities. The increased rates of fat oxidation result in reduced economy (increased oxygen demand for a given speed) at velocities that translate to real-life race performance in elite race walkers. In contrast to training with diets providing chronic or periodised high carbohydrate availability, adaptation to an LCHF diet impairs performance in elite endurance athletes despite a significant improvement in peak aerobic capacity. ABSTRACT: We investigated the effects of adaptation to a ketogenic low carbohydrate (CHO), high fat diet (LCHF) during 3 weeks of intensified training on metabolism and performance of world-class endurance athletes. We controlled three isoenergetic diets in elite race walkers: high CHO availability (g kg-1  day-1 : 8.6 CHO, 2.1 protein, 1.2 fat) consumed before, during and after training (HCHO, n = 9); identical macronutrient intake, periodised within or between days to alternate between low and high CHO availability (PCHO, n = 10); LCHF (< 50 g day-1 CHO; 78% energy as fat; 2.1 g kg-1  day-1 protein; LCHF, n = 10). Post-intervention, V̇O2 peak during race walking increased in all groups (P < 0.001, 90% CI: 2.55, 5.20%). LCHF was associated with markedly increased rates of whole-body fat oxidation, attaining peak rates of 1.57 ± 0.32 g min-1 during 2 h of walking at ∼80% V̇O2 peak . However, LCHF also increased the oxygen (O2 ) cost of race walking at velocities relevant to real-life race performance: O2 uptake (expressed as a percentage of new V̇O2 peak ) at a speed approximating 20 km race pace was reduced in HCHO and PCHO (90% CI: -7.047, -2.55 and -5.18, -0.86, respectively), but was maintained at pre-intervention levels in LCHF. HCHO and PCHO groups improved times for 10 km race walk: 6.6% (90% CI: 4.1, 9.1%) and 5.3% (3.4, 7.2%), with no improvement (-1.6% (-8.5, 5.3%)) for the LCHF group. In contrast to training with diets providing chronic or periodised high-CHO availability, and despite a significant improvement in V̇O2 peak , adaptation to the topical LCHF diet negated performance benefits in elite endurance athletes, in part due to reduced exercise economy.


Assuntos
Desempenho Atlético , Dieta com Restrição de Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Condicionamento Físico Humano , Caminhada/fisiologia , Adulto , Humanos , Metabolismo dos Lipídeos , Masculino , Consumo de Oxigênio
11.
Eur J Appl Physiol ; 117(6): 1233-1239, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28409396

RESUMO

PURPOSE: The extent to which hepcidin regulation after acute bouts of exercise is influenced by baseline (resting) concentrations of key iron parameters remains uncertain. This investigation explored the influence of selected iron parameters and 25-km race walk time on 3-h post-exercise hepcidin-25 levels in international-level race walkers. METHODS: Twenty-four male race walkers completed a graded exercise test and a 25-km race-walk trial. Throughout the 25-km race-walk, venous blood samples were collected pre-exercise, immediately post-exercise, and at 3-h post-exercise. Blood was analysed for serum ferritin, serum iron, Interleukin-6 (IL-6), and hepcidin-25 concentration. RESULTS: IL-6 and hepcidin-25 increased (7.6- and 7.5-fold, respectively) in response to the 25-km race-walk trial (both p < 0.01). Significant individual relationships were evident between 3-h post-exercise hepcidin-25, baseline serum ferritin and serum iron (r > 0.62; p < 0.05). Multiple regression analysis showed that these two iron parameters, in addition to post-exercise IL-6 concentration and 25-km race-walk time, accounted for ~77% of the variance in 3-h post-exercise hepcidin-25 (p < 0.01). A median split by the cohort's baseline serum ferritin concentration (LOW: 58.0 vs. HIGH: 101.8 µg/L; p < 0.01) showed a significant between group difference in the 3-h post-exercise hepcidin-25 (LOW: 6.0 ± 3.6 vs. 11.3 ± 5.4 nM; p = 0.01), despite no differences in baseline serum iron, post-exercise IL-6, or 25-km race-walk time (all p > 0.05). CONCLUSION: Despite exercise activating numerous hepcidin regulators, baseline iron status appears to play a dominant role in the regulation of hepcidin-25 in elite-level athletes subsequent to endurance exercise.


Assuntos
Exercício Físico , Hepcidinas/sangue , Ferro/sangue , Adulto , Atletas , Humanos , Interleucina-6/sangue , Masculino
12.
Int J Sport Nutr Exerc Metab ; 24(5): 553-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25029702

RESUMO

Some athletes avoid dairy in the meal consumed before exercise due to fears about gastrointestinal discomfort. Regular exclusion of dairy foods may unnecessarily reduce intake of high quality proteins and calcium with possible implications for body composition and bone health. This study compared the effects of meals that included (Dairy) or excluded (Control) dairy foods on gastric comfort and subsequent cycling performance. Well-trained female cyclists (n = 32; mean ± SD; 24.3 ± 4.1 y; VO(2peak) 57.1 ± 4.9 ml/kg/min) completed two trials (randomized cross-over design) in which they consumed a meal (2 g/kg carbohydrate and 54 kJ/kg) 2 hr before a 90-min cycle session (80 min at 60% maximal aerobic power followed by a 10-min time trial; TT). The dairy meal contained 3 servings of dairy foods providing ~1350 mg calcium. Gut comfort and palatability were measured using questionnaires. Performance was measured as maximum mean power during the TT (MMP10(min)). There was no statistical or clinical evidence of an effect of meal type on MMP10(min) with a mean difference (Dairy - Control) of 4 W (95% CI [-2, 9]). There was no evidence of an association between pretrial gut comfort and meal type (p = .15) or between gut comfort delta scores and meal type postmeal (p = .31), preexercise (p = .17) or postexercise (p = .80). There was no statistical or clinical evidence of a difference in palatability between meal types. In summary, substantial amounts of dairy foods can be included in meals consumed before strenuous cycling without impairing either gut comfort or performance.


Assuntos
Dor Abdominal , Ciclismo , Laticínios , Dieta , Exercício Físico , Refeições , Resistência Física , Dor Abdominal/etiologia , Adulto , Laticínios/efeitos adversos , Feminino , Humanos , Esforço Físico , Inquéritos e Questionários , Paladar , Adulto Jovem
13.
J Physiol ; 591(9): 2319-31, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23459753

RESUMO

Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n = 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-(13)C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1-12 h recovery (88-148%, P < 0.02), but INT elicited greater MPS than PULSE and BOLUS (31-48%, P < 0.02). In general signalling showed a BOLUS>INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass.


Assuntos
Proteínas do Leite/administração & dosagem , Proteínas Musculares/biossíntese , Miofibrilas/metabolismo , Treinamento Resistido , Adulto , Aminoácidos/sangue , Ingestão de Alimentos , Humanos , Insulina/sangue , Masculino , Biossíntese de Proteínas , Fatores de Tempo , Proteínas do Soro do Leite , Adulto Jovem
14.
J Sports Sci ; 31(7): 787-94, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23521618

RESUMO

The purpose of this study was to examine the distribution of pace self-selected by cyclists of varying ability, biological age and sex performing in a mountain bike World Championship event. Data were collected on cyclists performing in the Elite Male (ELITEmale; n = 75), Elite Female (ELITEfemale; n = 50), Under 23 Male (U23male; n = 62), Under 23 Female (U23female; n = 34), Junior Male (JNRmale; n = 71) and Junior Female (JNRfemale; n = 30) categories of the 2009 UCI Cross-Country Mountain Bike World Championships. Split times were recorded for the top, middle and bottom 20% of all finishers of each category. Timing splits were positioned to separate the course into technical and non-technical, uphill, downhill and rolling/flat sections. Compared with bottom performers, top performers in all male categories (ELITEmale, U23male, JNRmale) maintained a more even pace over the event as evidenced by a significantly lower standard deviation and range in average lap speed. Top performers, males, and ELITEmale athletes spent a lower percentage of overall race time on technical uphill sections of the course, compared with middle and bottom placed finishers, females, and JNRmale athletes, respectively. Better male performers adopt a more even distribution of pace throughout cross-country mountain events. Performance of lower placed finishers, females and JNRmale athletes may be improved by enhancing technical uphill cycling ability.


Assuntos
Desempenho Atlético , Ciclismo , Comportamento Competitivo , Resistência Física , Esforço Físico , Adolescente , Adulto , Feminino , Humanos , Masculino , Fatores Sexuais , Adulto Jovem
15.
Sports Med ; 53(11): 2111-2134, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37490269

RESUMO

BACKGROUND: Fluid loss during prolonged exercise in hot conditions poses thermoregulatory and cardiovascular challenges for athletes that can lead to impaired performance. Pre-exercise hyperhydration using nutritional aids is a strategy that may prevent or delay the adverse effects of dehydration and attenuate the impact of heat stress on exercise performance. OBJECTIVES: The aim of this systematic review was to examine the current literature to determine the effect of pre-exercise hyperhydration on performance, key physiological responses and gastrointestinal symptoms. METHODS: English language, full-text articles that compared the intervention with a baseline or placebo condition were included. An electronic search of Medline Complete, SPORTDiscus and Embase were used to identify articles with the final search conducted on 11 October 2022. Studies were assessed using the American Dietetic Association Quality Criteria Checklist. RESULTS: Thirty-eight studies involving 403 participants (n = 361 males) were included in this review (n = 22 assessed exercise performance or capacity). Two studies reported an improvement in time-trial performance (range 5.7-11.4%), three studies reported an improvement in total work completed (kJ) (range 4-5%) and five studies reported an increase in exercise capacity (range 14.3-26.2%). During constant work rate exercise, nine studies observed a reduced mean heart rate (range 3-11 beats min-1), and eight studies reported a reduced mean core temperature (range 0.1-0.8 °C). Ten studies reported an increase in plasma volume (range 3.5-12.6%) compared with a control. Gastrointestinal symptoms were reported in 26 studies, with differences in severity potentially associated with factors within the ingestion protocol of each study (e.g. treatment, dose, ingestion rate). CONCLUSIONS: Pre-exercise hyperhydration may improve exercise capacity during constant work rate exercise due to a reduced heart rate and core temperature, stemming from an acute increase in plasma volume. The combination of different osmotic aids (e.g. glycerol and sodium) may enhance fluid retention and this area should continue to be explored. Future research should utilise valid and reliable methods of assessing gastrointestinal symptoms. Furthermore, studies should investigate the effect of hyperhydration on different exercise modalities whilst implementing a strong level of blinding. Finally, females are vastly underrepresented, and this remains a key area of interest in this area.

16.
Nutrients ; 15(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37571316

RESUMO

l-menthol (menthol) is an organic compound derived from peppermint which imparts a refreshing mint flavor and aroma to oral hygiene products, chewing gum, and topical analgesics. Menthol has been identified as a non-thermal sensory cooling strategy for athletes when ingested or mouth-rinsed during exercise in hot environments. Therefore, sports nutrition products delivering a controlled concentration of menthol could be beneficial for athletes exercising in the heat. We sought to test the performance and perceptual outcomes of a novel menthol energy gel during treadmill running in the heat (33 °C, 49% RH). Fourteen trained runners (mean ± SD; age: 31 ± 6 years, VO2max: 56.5 ± 10.1 mL·kg-1·min-1, BMI: 23.2 ± 2.4 kg/m2; six female) participated in a randomized, crossover, double-blind, and placebo-controlled study. A menthol-enhanced energy gel (0.5% concentration; MEN) or flavor-matched placebo (PLA) was ingested 5 min before and again at 20 and 40 min of a 40 min treadmill exercise preload at 60% VO2max, followed by a 20 min self-paced time trial. The total distance, vertical distance, perceptual measures (thermal comfort, thermal sensation, rating of perceived exertion, and affect), and cognitive performance via computerized neurocognitive assessment were measured. No difference between 20 min self-paced time trial total distance (MEN: 4.22 ± 0.54 km, PLA: 4.22 ± 0.55 km, p = 0.867), vertical distance (MEN: 49.2 ± 24.6 m, PLA: 44.4 ± 11.4 m, p = 0.516), or any perceptual measures was observed (all p > 0.05). Cognitive performance was not different between the trials (all p > 0.05). These results suggest that a menthol energy gel is not superior to a non-menthol gel in terms of performance or perception during treadmill running in the heat. More research is needed to confirm whether these findings translate to ecologically valid settings, including outdoor exercise in ambient heat and during competition.


Assuntos
Desempenho Atlético , Corrida , Humanos , Feminino , Adulto , Mentol , Exercício Físico , Sensação Térmica , Temperatura Alta , Poliésteres
17.
Int J Sports Physiol Perform ; 18(7): 686-694, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263595

RESUMO

PURPOSE: To examine the effects of a high-carbohydrate diet (HCHO), periodized-carbohydrate (CHO) diet (PCHO), and ketogenic low-CHO high-fat diet (LCHF) on training capacity. METHODS: Elite male racewalkers completed 3 weeks of periodic training while adhering to their dietary intervention. Twenty-nine data sets were collected from 21 athletes. Each week, 6 mandatory training sessions were completed, with additional sessions performed at the athlete's discretion. Mandatory sessions included an interval session (10 × 1-km efforts on a 6-min cycle), tempo session (14 km with a 450-m elevation gain), 2 long walks (25-40 km), and 2 easy walks (8-12 km) where "sleep-low" and "train-low" dietary strategies were employed for PCHO. Racewalking speed, heart rate, rating of perceived exhaustion, and blood metabolites were collected around key sessions. RESULTS: LCHF covered less total distance than HCHO and PCHO (P < .001); however, no differences in training load between groups were evident (P = .285). During the interval sessions, walking speed was slower in LCHF (P = .001), equating to a 2.8% and 5.6% faster speed in HCHO and PCHO, respectively. LCHF was also 3.2% slower in completing the tempo session than HCHO and PCHO (P = .001). Heart rate was higher (P = .002) and lactate concentrations were lower (P < .001) in LCHF compared to other groups, despite slower walking speeds during the interval session. No between-groups differences in rating of perceived exhaustion were evident (P = .077). CONCLUSION: Athletes adhering to an LCHF diet showed impaired training capacity relative to their high-CHO-supported counterparts, completing lower training volumes at slower speeds, with higher heart rates.


Assuntos
Carboidratos , Dieta Hiperlipídica , Humanos , Masculino , Atletas , Ácido Láctico , Carboidratos da Dieta
18.
Med Sci Sports Exerc ; 55(1): 55-65, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35977107

RESUMO

INTRODUCTION: Although an acute exercise session typically increases bone turnover markers (BTM), the impact of subsequent sessions and the interaction with preexercise calcium intake remain unclear despite the application to the "real-life" training of many competitive athletes. METHODS: Using a randomized crossover design, elite male rowers ( n = 16) completed two trials, a week apart, consisting of two 90-min rowing ergometer sessions (EX1, EX2) separated by 150 min. Before each trial, participants consumed a high (CAL; ~1000 mg) or isocaloric low (CON; <10 mg) calcium meal. Biochemical markers including parathyroid hormone (PTH), serum ionized calcium (iCa) and BTMs (C-terminal telopeptide of type I collagen, osteocalcin) were monitored from baseline to 3 h after EX2. RESULTS: Although each session caused perturbances of serum iCa, CAL maintained calcium concentrations above those of CON for most time points, 4.5% and 2.4% higher after EX1 and EX2, respectively. The decrease in iCa in CON was associated with an elevation of blood PTH ( P < 0.05) and C-terminal telopeptide of type I collagen ( P < 0.0001) over this period of repeated training sessions and their recovery, particularly during and after EX2. Preexercise intake of calcium-rich foods lowered BTM over the course of a day with several training sessions. CONCLUSIONS: Preexercise intake of a calcium-rich meal before training sessions undertaken within the same day had a cumulative and prolonged effect on the stabilization of blood iCa during exercise. In turn, this reduced the postexercise PTH response, potentially attenuating the increase in markers of bone resorption. Such practical strategies may be integrated into the athlete's overall sports nutrition plan, with the potential to safeguard long-term bone health and reduce the risk of bone stress injuries.


Assuntos
Reabsorção Óssea , Cálcio , Humanos , Masculino , Biomarcadores , Cálcio da Dieta , Colágeno Tipo I , Hormônio Paratireóideo
19.
Med Sci Sports Exerc ; 55(8): 1487-1498, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36940222

RESUMO

PURPOSE: We investigated short-term (9 d) exposure to low energy availability (LEA) in elite endurance athletes during a block of intensified training on self-reported well-being, body composition, and performance. METHODS: Twenty-three highly trained race walkers undertook an ~3-wk research-embedded training camp during which they undertook baseline testing and 6 d of high energy/carbohydrate (HCHO) availability (40 kcal·kg FFM -1 ·d -1 ) before being allocated to 9 d continuation of this diet ( n = 10 M, 2 F) or a significant decrease in energy availability to 15 kcal·kg FFM -1 ·d -1 (LEA: n = 10 M, 1 F). A real-world 10,000-m race walking event was undertaken before (baseline) and after (adaptation) these phases, with races being preceded by standardized carbohydrate fueling (8 g·kg body mass [BM] -1 for 24 h and 2 g·kg BM -1 prerace meal). RESULTS: Dual-energy x-ray absorptiometry-assessed body composition showed BM loss (2.0 kg, P < 0.001), primarily due to a 1.6-kg fat mass reduction ( P < 0.001) in LEA, with smaller losses (BM = 0.9 kg, P = 0.008; fat mass = 0.9 kg, P < 0.001) in HCHO. The 76-item Recovery-Stress Questionnaire for Athletes, undertaken at the end of each dietary phase, showed significant diet-trial effects for overall stress ( P = 0.021), overall recovery ( P = 0.024), sport-specific stress ( P = 0.003), and sport-specific recovery ( P = 0.012). However, improvements in race performance were similar: 4.5% ± 4.1% and 3.5% ± 1.8% for HCHO and LEA, respectively ( P < 0.001). The relationship between changes in performance and prerace BM was not significant ( r = -0.08 [-0.49 to 0.35], P = 0.717). CONCLUSIONS: A series of strategically timed but brief phases of substantially restricted energy availability might achieve ideal race weight as part of a long-term periodization of physique by high-performance athletes, but the relationship between BM, training quality, and performance in weight-dependent endurance sports is complicated.


Assuntos
Dieta , Esportes , Humanos , Carboidratos , Caminhada , Atletas , Composição Corporal
20.
Nutrients ; 14(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35565896

RESUMO

We implemented a multi-pronged strategy (MAX) involving chronic (2 weeks high carbohydrate [CHO] diet + gut-training) and acute (CHO loading + 90 g·h−1 CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON) in two groups of athletes. Nineteen elite male race walkers (MAX: 9; CON:10) undertook a 26 km race-walking session before and after the respective interventions to investigate gastrointestinal function (absorption capacity), integrity (epithelial injury), and symptoms (GIS). We observed considerable individual variability in responses, resulting in a statistically significant (p < 0.001) yet likely clinically insignificant increase (Δ 736 pg·mL−1) in I-FABP after exercise across all trials, with no significant differences in breath H2 across exercise (p = 0.970). MAX was associated with increased GIS in the second half of the exercise, especially in upper GIS (p < 0.01). Eighteen highly trained male and female distance runners (MAX: 10; CON: 8) then completed a 35 km run (28 km steady-state + 7 km time-trial) supported by either a slightly modified MAX or CON strategy. Inter-individual variability was observed, without major differences in epithelial cell intestinal fatty acid binding protein (I-FABP) or GIS, due to exercise, trial, or group, despite the 3-fold increase in exercise CHO intake in MAX post-intervention. The tight-junction (claudin-3) response decreased in both groups from pre- to post-intervention. Groups achieved a similar performance improvement from pre- to post-intervention (CON = 39 s [95 CI 15−63 s]; MAX = 36 s [13−59 s]; p = 0.002). Although this suggests that further increases in CHO availability above current guidelines do not confer additional advantages, limitations in our study execution (e.g., confounding loss of BM in several individuals despite a live-in training camp environment and significant increases in aerobic capacity due to intensified training) may have masked small differences. Therefore, athletes should meet the minimum CHO guidelines for training and competition goals, noting that, with practice, increased CHO intake can be tolerated, and may contribute to performance outcomes.


Assuntos
Carboidratos da Dieta , Resistência Física , Atletas , Dieta , Feminino , Humanos , Masculino , Resistência Física/fisiologia , Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA