Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 56(27): 7577-7585, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-29047734

RESUMO

Benefiting from close to ideal amplification properties (high gain, low dark current, and low excess noise factor), HgCdTe electron initiated avalanche photodiode (e-APD) technology exhibits state of the art sensitivity, thus being especially relevant for applications relying on low light level detection, such as LIDAR (Light Detection And Ranging). In addition, the tunable gap of the Hg1-xCdxTe alloy enables coverage of the short wavelength infrared (SWIR) and especially the 2 µm spectral range. For these two reasons, a HgCdTe e-APD based detector is a promising candidate for future differential absorption LIDAR missions targeting greenhouse gas absorption bands in SWIR. In this study, we report on the design and evaluation of such a HgCdTe e-APD based detector. The first part focuses on detector architecture and performance. Key figures of merit are: 2.8 µm cutoff wavelength, 200 µm diameter almost circular sensitive area, 185 K operating temperature (thermo-electric cooling), 22 APD gain (at 12 V reverse bias), 360 kΩ transimpedance gain, and 60 fWHz-0.5 noise equivalent power (at 12 V reverse bias). The second part presents an analysis of atmospheric LIDAR signals obtained by mounting the HgCdTe e-APD based detector on the 2 µm differential absorption LIDAR developed at the Laboratoire de Météorologie Dynamique and dedicated to CO2 monitoring. Discussion emphasizes random and systematic errors in LIDAR measurements regarding breadboard detector characterization. In particular, we investigate the influence of parasitic tails in detector impulse response on short range DIAL measurements.

2.
Opt Lett ; 38(3): 254-6, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23381402

RESUMO

We use numerical simulations to show that a suitably dimensioned periodic arrangement of vertical metallic metal-dielectric-metal nanocavities supports a hybrid plasmonic mode whose spatial electric field distribution is suitable for use in infrared photodetectors based on an unpatterned semiconductor thin-film absorbing layer. The partially localized nature of the hybrid mode offers reduced sensitivity to the angle of incoming light and smaller pixel sizes compared with surface plasmonic modes coupled by diffraction.

3.
Nat Mater ; 5(8): 653-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16845420

RESUMO

The emerging field of spintronics would be dramatically boosted if room-temperature ferromagnetism could be added to semiconductor nanostructures that are compatible with silicon technology. Here, we report a high-TC (>400K) ferromagnetic phase of (Ge,Mn) epitaxial layer. The manganese content is 6%, and careful structural and chemical analyses show that the Mn distribution is strongly inhomogeneous: we observe eutectoid growth of well-defined Mn-rich nanocolumns surrounded by a Mn-poor matrix. The average diameter of these nanocolumns is 3nm and their spacing is 10nm. Their composition is close to Ge(2)Mn, which corresponds to an unknown germanium-rich phase, and they have a uniaxially elongated diamond structure. Their Curie temperature is higher than 400K. Magnetotransport reveals a pronounced anomalous Hall effect up to room temperature. A giant positive magnetoresistance is measured from 7,000% at 30K to 200% at 300K and 9T, with no evidence of saturation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA