Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Trends Food Sci Technol ; 104: 219-234, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32836826

RESUMO

BACKGROUND: Garlic (Allium sativum L.) is a common herb consumed worldwide as functional food and traditional remedy for the prevention of infectious diseases since ancient time. Garlic and its active organosulfur compounds (OSCs) have been reported to alleviate a number of viral infections in pre-clinical and clinical investigations. However, so far no systematic review on its antiviral effects and the underlying molecular mechanisms exists. SCOPE AND APPROACH: The aim of this review is to systematically summarize pre-clinical and clinical investigations on antiviral effects of garlic and its OSCs as well as to further analyse recent findings on the mechanisms that underpin these antiviral actions. PubMed, Cochrane library, Google Scholar and Science Direct databases were searched and articles up to June 2020 were included in this review. KEY FINDINGS AND CONCLUSIONS: Pre-clinical data demonstrated that garlic and its OSCs have potential antiviral activity against different human, animal and plant pathogenic viruses through blocking viral entry into host cells, inhibiting viral RNA polymerase, reverse transcriptase, DNA synthesis and immediate-early gene 1(IEG1) transcription, as well as through downregulating the extracellular-signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) signaling pathway. The alleviation of viral infection was also shown to link with immunomodulatory effects of garlic and its OSCs. Clinical studies further demonstrated a prophylactic effect of garlic in the prevention of widespread viral infections in humans through enhancing the immune response. This review highlights that garlic possesses significant antiviral activity and can be used prophylactically in the prevention of viral infections.

2.
IUBMB Life ; 71(9): 1192-1200, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31021508

RESUMO

In this article, we have summarized the biological sources and pharmacological activities of agathisflavone along with molecular docking studies to correlate the interaction of this biflavonoid and biomacromolecules involving in its biological effects observed in database-oriented scientific reports. For this, an up-to-date (from 1991 to October 2018) search was done on the databases such as PubMed, Science Direct, Web of Science, Scopus, The American Chemical Society, Clinicaltrials.gov, and Google Scholar databases. The findings suggest that agathisflavone possesses antioxidant, anti-inflammatory, antiviral, antiparasitic, cytotoxic, neuroprotective, and hepatoprotective activities. An in silico study of agathisflavone against 17 essential proteins/enzymes revealed that inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 are the most efficient enzymes for the interaction and binding of this biflavonoid for its anti-inflammatory activity. In conclusion, agathisflavone may be one of the promising plant-derived lead compounds in the treatment of oxidative stress, inflammatory diseases, microbial infection, hepatic and neurological diseases and disorders, and cancer. © 2019 IUBMB Life, 71(9):1192-1200, 2019.


Assuntos
Anti-Inflamatórios/química , Antioxidantes/química , Biflavonoides/química , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Biflavonoides/uso terapêutico , Simulação por Computador , Ciclo-Oxigenase 2/genética , Humanos , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase Tipo II/genética , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Ligação Proteica/genética
3.
IUBMB Life ; 71(1): 9-19, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308112

RESUMO

This review aims to summarize the anticancer effects of the natural monoterpene phenol derivative of cymenethymol and its derivatives as well as further molecular docking study to correlate the interaction of thymol and biomacromolecules that involved in cancer cell growth. For this, an up-to-date (till July 2018) literature study were made through using PubMed, Science Direct, Web of Science, Scopus, The American Chemical Society, Clinicaltrials.gov, and Google Scholar databases. Literature study demonstrated that thymol, melasolv (3,4,5-Trimethoxycinnamate thymol ester), and Mannich bases of thymol have potential anticancer effects in various test systems, including mice, rats and cultured cancer cells through various anticancer pathways such as antioxidant/oxidative stress induction, apoptosis, anti-inflammatory/immunomodulatory, anti-genotoxicity, chemo-, and radiopreventive ways. A few earlier scientific evidences showed that thymol is less toxic to mammalian systems. In silico study of thymol and its derivatives against 17 essential proteins revealed that 6BVH (PARP-1) and 5LIH (protein kinase C) are the most efficient receptor protein for interaction and binding of thymol and melaslov for the cancer prevention and initiation. On the basis of the summary of this review and docking study, it is evident that thymol may be one of promising plant-derived cancer chemotherapeutic agents. © 2018 IUBMB Life, 71(1):9-19, 2019.


Assuntos
Anticarcinógenos/química , Cinamatos/química , Neoplasias/tratamento farmacológico , Timol/química , Animais , Anticarcinógenos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cinamatos/farmacologia , Humanos , Camundongos , Simulação de Acoplamento Molecular , Neoplasias/genética , Poli(ADP-Ribose) Polimerase-1/genética , Proteína Quinase C/genética , Ratos , Timol/farmacologia
4.
Biotechnol Appl Biochem ; 66(3): 434-444, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30801842

RESUMO

Ponicidin, an ent-kaurane diterpenoid derived from Rabdosia rubescens, exhibits antitumor activities against several types of cancers. This review summarizes the botanical sources, biological activities, and biopharmaceutical profile of ponicidin. Additionally, a molecular docking study has been undertaken to correlate the interaction of this diterpenoid with biomacromolecules found in the literature. For this purpose, an up-to-date (till December 2018) literature survey was conducted using a number of databases such as PubMed, Science Direct, Web of Science, Scopus, the American Chemical Society, Clinicaltrials.gov, and Google Scholar. Findings suggest that ponicidin exerts antioxidant and anticancer activity in various test systems, including experimental animals and cultured cancer cells. Research findings revealed that anticancer mechanisms of ponicidin include antioxidant/oxidative stress induction, cytotoxic, apoptotic inductive, chemosensitizer, antiangiogenic, and antiproliferative effects. In silico study suggests that 5ITD (PI3K) was the best protein with which ponicidin interacts to exert its anticancer effect. In conclusion, ponicidin might be a promising plant-derived cancer chemotherapeutic agent.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Diterpenos/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diterpenos/química , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isodon/química , Conformação Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação , Relação Estrutura-Atividade
5.
Phytother Res ; 33(10): 2585-2608, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31373097

RESUMO

Traditionally, sesame oil (SO) has been used as a popular food and medicine. The review aims to summarize the antioxidant and antiinflammatory effects of SO and its identified compounds as well as further fatty acid profiling and molecular docking study to correlate the interaction of its identified constituents with cyclooxygenase-2 (COX-2). For this, a literature study was made using Google Scholar, Pubmed, and SciFinder databases. Literature study demonstrated that SO has potential antioxidant and antiinflammatory effects in various test systems, including humans, animals, and cultured cells through various pathways such as inhibition of COX, nonenzymatic defense mechanism, inhibition of proinflammatory cytokines, NF-kB or mitogen-activated protein kinase signaling, and prostaglandin synthesis pathway. Fatty acid analysis of SO using gas chromatography identified known nine fatty acids. In silico study revealed that sesamin, sesaminol, sesamolin, stigmasterol, Δ5-avenasterol, and Δ7-avenasterol (-9.6 to -10.7 kcal/mol) were the most efficient ligand for interaction and binding with COX-2. The known fatty acid also showed binding efficiency with COX-2 to some extent (-6.0 to -8.4 kcal/mol). In summary, it is evident that SO may be one of promising traditional medicines that we could use in the prevention and management of diseases associated with oxidative stress and inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Óleo de Gergelim/farmacologia , Animais , Humanos , Estresse Oxidativo/efeitos dos fármacos , Óleo de Gergelim/análise , Óleo de Gergelim/química
6.
IUBMB Life ; 70(11): 1084-1092, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30180298

RESUMO

Mitochondria are the powerhouse of cells, which upon dysfunctions may lead to several diseases. Mycotoxins are the toxic secondary metabolites from fungi which are capable of causing diseases and death in humans and animals. They have a versatile mechanism of action in biological systems and can be used as lead compounds to treat some diseases including cancer. The present work encompasses analysis on the effects of mycotoxins on mitochondrial dysfunction. Electronic databases such as PubMed, ScienceDirect, Scopus, Web of Science, and Google Scholar were thoroughly searched for up-to-date published information associated with those mycotoxins and their effect on mitochondrial dysfunction. Findings suggest that mycotoxins such as citrinin, aflatoxin, and T-2 toxin exert multi-edged sword-like effects in test systems causing mitochondrial dysfunction. Mycotoxins can induce oxidative stress even at low concentration/dose that may be one of the major causes of mitochondrial dysfunction. On the other hand, activation of apoptotic caspases and other proteins by mycotoxins may lead to apoptotic cell death. Thus, mycotoxins-mediated mitochondrial dysfunction may be related to several chronic diseases which also makes these mycotoxins considerable as lead compounds for inducing toxic effects in cells. Their cytotoxic effects on cancer cells suggest their possible application as chemotherapeutic tools. © 2018 IUBMB Life, 70(11):1084-1092, 2018.


Assuntos
Mitocôndrias/patologia , Micotoxinas/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Venenos/farmacologia , Animais , Humanos , Mitocôndrias/efeitos dos fármacos
7.
Phytother Res ; 32(12): 2376-2388, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30281175

RESUMO

Beta (ß)-caryophyllene (BCAR) is a major sesquiterpene of various plant essential oils reported for several important pharmacological activities, including antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, antimicrobial, and immune-modulatory activity. Recent studies suggest that it also possesses neuroprotective effect. This study reviews published reports pertaining to the neuropharmacological activities of BCAR. Databases such as PubMed, Scopus, MedLine Plus, and Google Scholar with keywords "beta (ß)-caryophyllene" and other neurological keywords were searched. Data were extracted by referring to articles with information about the dose or concentration/route of administration, test system, results and discussion, and proposed mechanism of action. A total of 545 research articles were recorded, and 41 experimental studies were included in this review, after application of exclusion criterion. Search results suggest that BCAR exhibits a protective role in a number of nervous system-related disorders including pain, anxiety, spasm, convulsion, depression, alcoholism, and Alzheimer's disease. Additionally, BCAR has local anesthetic-like activity, which could protect the nervous system from oxidative stress and inflammation and can act as an immunomodulatory agent. Most neurological activities of this natural product have been linked with the cannabinoid receptors (CBRs), especially the CB2R. This review suggests a possible application of BCAR as a neuroprotective agent.


Assuntos
Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Animais , Produtos Biológicos/uso terapêutico , Fármacos do Sistema Nervoso Central/farmacologia , Fármacos do Sistema Nervoso Central/uso terapêutico , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/prevenção & controle , Humanos , Fármacos Neuroprotetores/uso terapêutico , Óleos Voláteis/uso terapêutico , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Sesquiterpenos Policíclicos , Sesquiterpenos/uso terapêutico
8.
Proteins ; 85(5): 969-975, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28168856

RESUMO

A lectin with strong cytotoxic effect on human colon cancer HT29 and monkey kidney VERO cells was recently identified from the Australian indigenous mushroom Psathyrella asperospora and named PAL. We herein present its biochemical and structural analysis using a multidisciplinary approach. Glycan arrays revealed binding preference towards N-acetylglucosamine (GlcNAc) and, to a lesser extent, towards sialic acid (Neu5Ac). Submicromolar and millimolar affinity was measured by surface plasmon resonance for GlcNAc and NeuAc, respectively. The structure of PAL was resolved by X-ray crystallography, elucidating both the protein's amino acid sequence as well as the molecular basis rationalizing its binding specificity. Proteins 2017; 85:969-975. © 2016 Wiley Periodicals, Inc.


Assuntos
Acetilglucosamina/química , Agaricales/química , Antineoplásicos/química , Proteínas Fúngicas/química , Lectinas/química , Ácido N-Acetilneuramínico/química , Acetilglucosamina/metabolismo , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Sítios de Ligação , Carbocianinas/química , Chlorocebus aethiops , Cristalografia por Raios X , Corantes Fluorescentes/química , Carpóforos/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Células HT29 , Humanos , Lectinas/isolamento & purificação , Lectinas/metabolismo , Análise em Microsséries , Ácido N-Acetilneuramínico/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Coloração e Rotulagem , Ressonância de Plasmônio de Superfície , Células Vero
9.
Biopolymers ; 108(3)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28009046

RESUMO

Cyclotides are considered promising scaffolds for drug development owing to their inherent host defence activities and highly stable structure, defined by the cyclic cystine knot. These proteins are expressed as complex mixtures in plants. Although several methods have been developed for their isolation and analysis, purification of cyclotides is still a lengthy process. Here, we describe the use of affinity chromatography for the purification of cyclotides using polyclonal IgG antibodies raised in rabbits against cycloviolacin O2 and immobilized on NHS-activated Sepharose columns. Cycloviolacin O2 was used as a model substance to evaluate the chromatographic principle, first as a pure compound and then in combination with other cyclotides, that is, bracelet cyclotide cycloviolacin O19 and Möbius cyclotide kalata B1, and in a plant extract. We demonstrate that single-step purification of cyclotides by affinity chromatography is possible but cross reactivity may occur between homologue cyclotides of the bracelet subfamily.


Assuntos
Anticorpos/química , Cromatografia de Afinidade/métodos , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Ciclotídeos/imunologia , Motivos Nó de Cisteína/imunologia , Coelhos
10.
Int J Mol Sci ; 16(4): 7802-38, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25856678

RESUMO

Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell-cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity.


Assuntos
Agaricales/metabolismo , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antivirais/química , Antivirais/farmacologia , Humanos , Imunomodulação , Modelos Moleculares , Lectinas de Plantas/metabolismo , Estrutura Secundária de Proteína
11.
Glycoconj J ; 31(1): 61-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24072585

RESUMO

A new N-acetyl-D-glucosamine (GlcNAc) specific lectin was identified and purified from the fruiting body of the Australian indigenous mushroom Psathyrella asperospora. The functional lectin, named PAL, showed hemagglutination activity against neuraminidase treated rabbit and human blood types A, B and O, and exhibited high binding specificity towards GlcNAc, as well as mucin and fetuin, but not against asialofetuin. PAL purified to homogeneity by a combination of ammonium sulfate precipitation, chitin affinity chromatography and size exclusion chromatography, was monomeric with a molecular mass of 41.8 kDa, was stable at temperatures up to 55 °C and between pH 6-10, and did not require divalent cations for optimal activity. De novo sequencing of PAL using LC-MS/MS, identified 10 tryptic peptides that revealed substantial sequence similarity to the GlcNAc recognizing lectins from Psathyrella velutina (PVL) and Agrocybe aegerita (AAL-II) in both the carbohydrate binding and calcium binding sites. Significantly, PAL was also found to exert a potent anti-proliferative effect on HT29 cells (IC50 0.48 µM) that was approximately 3-fold greater than that observed on VERO cells; a difference found to be due to the differential expression of cell surface GlcNAc on HT29 and VERO cells. Further characterization of this activity using propidium iodine staining revealed that PAL induced cell cycle arrest at G2/M phase in a manner dependent on its ability to bind GlcNAc.


Assuntos
Basidiomycota/química , Proteínas Fúngicas/química , Pontos de Checagem da Fase G2 do Ciclo Celular , Pontos de Checagem da Fase M do Ciclo Celular , Receptores de N-Acetilglucosamina/química , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteínas Fúngicas/imunologia , Humanos , Dados de Sequência Molecular , Coelhos , Receptores de N-Acetilglucosamina/imunologia , Células Vero
12.
Fitoterapia ; 175: 105896, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471574

RESUMO

Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.


Assuntos
Cornus , Glicosídeos , Compostos Fitoquímicos , Animais , Humanos , Antioxidantes/farmacologia , Cornus/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Estrutura Molecular , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação
13.
J Ethnopharmacol ; 300: 115757, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36167233

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Callicarpa arborea Roxb. is widely used as traditional medicine especially by the tribal people of Bangladesh in the management of wide range of ailments. In addition to Bangladesh, the leaves of this plant is utilized as a remedy to various painful and inflammatory conditions including rheumatism, toothache and stomachache in other countries of Indian subcontinent. AIM OF THE STUDY: Depending on the ethnomedicinal uses, we undertook this study to investigate the in-vivo analgesic and anti-inflammatory activities of the methanolic extract of C. arborea Roxb. leaves in Swiss albino mice as well as its chemical composition. MATERIALS AND METHODS: We evaluated the analgesic activity of Callicarpa arborea Roxb. leaves by the acetic acid induced writhing test, the hot plate test, and the formalin test. We undertook the egg albumin induced paw edema test to determine the anti-inflammatory activity of the plant. Furthermore, we conducted the phytochemical profiling by gas chromatography-mass spectrometry (GC-MS). RESULTS: In acute toxicity test, no mortality was observed at the highest dose of 2000 mg/kg b.w. Significant (p < 0.005) inhibition of acetic acid induced writhing was observed at both doses of the extract. A dose dependent increase in the response time was seen in the hot-plate test. In the formalin test, the extract significantly inhibited pain response in both early and late phase. We observed marked anti-inflammatory activity manifested by a significant (p < 0.005) reduction in egg albumin induced paw edema. We identified a total of twenty one compounds in the extract of by GC-MS analysis. CONCLUSION: Taken all into consideration we conclude that the leaves of C. arborea Roxb. possesses potent analgesic and anti-inflammatory activity, thus justifying its's ethnomedicinal use against painful and inflammatory pathological conditions.


Assuntos
Callicarpa , Ácido Acético/uso terapêutico , Albuminas/análise , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Humanos , Metanol/uso terapêutico , Camundongos , Dor/induzido quimicamente , Dor/tratamento farmacológico , Dor/patologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Folhas de Planta/química
14.
Int J Med Mushrooms ; 13(6): 493-504, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22181837

RESUMO

Fifteen Australian mushroom species (higher Basidiomycetes) were assessed for hemagglutination and lectin activity. Hemagglutination activity was evaluated using both neuraminidase treated and untreated rabbit and human A, B, and O erythrocytes. Lectin activity was determined by the ability of various mono- and oligosaccharides to inhibit hemagglutination activity. Of the mushrooms evaluated, seven contained lectin activity. However, five (Agaricus bitorquis, Chlorophyllum brunneum, Coprinus comatus, Cortinarius sp. TWM 1710, and Omphalotus nidiformis) expressed lectin activity in only one of two collections tested. The two remaining lectin active mushroom species (Phlebopus marginatus and Psathyrella asperospora) possessed lectin activity with the same sugar specificity in both collections. Although lectins were identified with diverse specificity, lactose-specific lectin activity was most frequently identified, being present in Agaricus bitorquis, Copronus comatus, Omphalotus nidiformis, and Phlebopus marginatus. In contrast, Psathyrella asperospora, Cortinarius sp. TWM 1710, and Chlorophyllum brunneum were found to possess lectin activity specific for N-acetyl-D-glucosamine, galactose, and N-acetyl-neurammic acid, respectively. Significantly, the galactose-specific lectin activity identified in Cortinarius sp. TWM 1710 and the lactose-specific lectin activity in Phlebopus marginatus have not been previously reported.


Assuntos
Basidiomycota/química , Eritrócitos/efeitos dos fármacos , Hemaglutinação/efeitos dos fármacos , Lectinas/metabolismo , Animais , Austrália , Células Cultivadas , Relação Dose-Resposta a Droga , Descoberta de Drogas , Eritrócitos/metabolismo , Humanos , Lectinas/química , Neuraminidase/farmacologia , Coelhos
15.
Artigo em Inglês | MEDLINE | ID: mdl-34504532

RESUMO

Liver diseases are quite prevalant in many densely populated countries, including Bangladesh. The liver and its hepatocytes are targeted by virus and microbes, as well as by chemical environmental toxicants, causing wide-spread disruption of metabolic fuctions of the human body, leading to death from end-stage liver diseases. The aim of this review is to systematically explore and record the potential of Bangladeshi ethnopharmacological plants to treat liver diseases with focus on their sources, constituents, and therapeutic uses, including mechanisms of actions (MoA). A literature survey was carried out using Pubmed, Google Scholar, ScienceDirect, and Scopus databases with articles reported until July, 2020. A total of 88 Bangladeshi hepatoprotective plants (BHPs) belonging to 47 families were listed in this review, including Euphorbiaceae, Cucurbitaceae, and Compositae families contained 20% of plants, while herbs were the most cited (51%) and leaves were the most consumed parts (23%) as surveyed. The effect of BHPs against different hepatotoxins was observed via upregulation of antioxidant systems and inhibition of lipid peroxidation which subsequently reduced the elevated liver biomarkers. Different active constituents, including phenolics, curcuminoids, cucurbitanes, terpenoids, fatty acids, carotenoids, and polysaccharides, have been reported from these plants. The hepatoameliorative effect of these constituents was mainly involved in the reduction of hepatic oxidative stress and inflammation through activation of Nrf2/HO-1 and inhibition of NF-κB signaling pathways. In summary, BHPs represent a valuable resource for hepatoprotective lead therapeutics which may offer new alternatives to treat liver diseases.

16.
Biochem Biophys Rep ; 25: 100909, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33521336

RESUMO

Date palm (P. dactylifera) plays a vital role in ethnomedicinal practices in several parts of the world. There are over 2000 cultivars of date palm that differ in chemical composition and extent of bioactivity. The present study was undertaken to comparatively evaluate the antioxidant potential of three cultivars of date palm (Ajwah, Safawy and Sukkari) from Saudi Arabia and analyze their phenolic constituents in order to draw a rationale for their activity. Antioxidant activities of the date cultivars were evaluated by different quantitative methods including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging assay, total antioxidant capacity, reducing power, total phenolic (TPC), flavonoid (TFC) and tannin content (TTC), while qualitative phenolic composition was determined using ultra performance liquid chromatography coupled to quadropole time of flight mass spectrometry (UPLC-QTOF-MS). All the three date extracts showed good DPPH radical scavenging (IC50 103-177 µg/mL) and hydroxyl radical scavenging (IC50 1.1-1.55 mg/mL) activity and total antioxidant capacity (IC50 87-192 µg/mL). The reducing power was also comparable to that of ascorbic acid, used as standard in above experiments. All the three samples contain significant amount of major antioxidant components (phenolic, flavonoid and tannin) that successfully correlates with the results of radical scavenging assays. UPLC-QTOF-MS revealed a total of 22 compounds in these date cultivars classified into common phenolics, flavonoids, sterols and phytoestrogens. Significant variation in the degree of antioxidant activity of these three date cultivars can be attributed to the difference in the content and composition of phenolic compounds.

17.
Curr Drug Targets ; 22(6): 656-671, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32981501

RESUMO

Pain is an unpleasant sensation that has complex and varying causative etiology. Modern drug discovery focuses on identifying potential molecules that target multiple pathways with a safer profile compared to those with a single target. The current treatment of pain and inflammation with the available therapeutics has a number of major side effects. Pain is one of the major clinical problems that need functional therapeutics which act on multiple targets and with low toxicity. Curcumin, a naturally occurring polyphenolic compound from Curcuma longa, has been used for years in Ayurvedic, Chinese, and in many other systems of traditional medicine. Pre-clinical data published thus far demonstrated that curcumin possesses multi-target biological functions, suggesting its potential use to cure different diseases. However, there is no or very brief systematic review of its potential use in pain and inflammation with underlying mechanisms for such activities. Accordingly, the aim of the current review was to update the pre-clinical data of curcumin and its multiple targeting pathways for analgesic and anti-inflammatory effects, and to further propose a molecular mechanism(s). A literature study was conducted using different known databases, including Pubmed, SciFinder, Google Scholar, and Science Direct. Available pre-clinical data suggest the ameliorating effect of curcumin in pain and inflammation is rendered through the modulation of pain pathways, including inhibition of a number of pro-inflammatory mediators, inhibition of oxidative stress and cyclooxygenase-2 (COX-2), down-regulation of Ca2+/calmodulin-depend protein kinase II (CaMKIIα) and calcium channels like transient receptor potential (TRP), modulation of metabotropic glutamate receptor-2 (mGlu2), modulation of monoamine system, inhibition of JAK2/STAT3 signaling pathway, remodeling of extracellular matrix proteins, inhibition of apoptosis, inhibition of JNK/MAPK and ERK/CREB signaling pathway, and activation of the opioid system. Taken all together, it is evident that curcumin is one of the promising, safe, and natural polyphenolic molecules that target multiple molecular pathways in pain and can be beneficial in the treatment and management of pain and inflammation.


Assuntos
Curcumina , Inflamação , Dor , Apoptose , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
18.
Adv Pharmacol Pharm Sci ; 2021: 1540336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957401

RESUMO

Plants act as a rich source of novel natural pesticides. In the backdrop of the recent revival of interest in developing plant-based insecticides, this study was carried out to investigate the pesticidal activity of Sundarban mangrove plants. A total of nine different plant parts from five plants, namely, Aegiceras corniculatum, Excoecaria agallocha, Heritiera fomes, Xylocarpus moluccensis, and Xylocarpus granatum, were extracted with methanol and tested for insecticidal activity against two common stored product pests Sitophilus oryzae and Sitophilus zeamais using direct contact feeding deterrent wafer disc method. Three bark extracts from A. corniculatum, E. agallocha, and H. fomes showed potent and statistically significant insecticidal activity against both S. oryzae and S. zeamais pests (80-100% mortality). All the active bark extracts were further fractionated using C-18 solid-phase extraction (SPE) columns and tested for their insecticidal activity against S. oryzae pest to identify the active fraction. Only the SPE4 fraction (100% MeOH) from all the three active plants showed the activity against S. oryzae pest with a lethal concentration 50% (LC50) value of 0.5, 1.0, and 1.5 mg/disc for A. corniculatum, E. agallocha, and H. fomes, respectively. The active fraction of A. corniculatum was further profiled for identification of active compounds using LC-ESI-MS and identified (along with some unknown peaks) two previously reported compounds at m/z 625.17630 (isorhamnetin 3-O-rutinoside) and 422.25346 (paspaline) as major constituents. Insecticidal activities of these plants are reported in this study for the first time and would be useful in promoting research aiming for the development of new biopesticides from mangrove plants.

19.
Front Nutr ; 8: 653918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041259

RESUMO

Amaranthus spinosus is a common vegetable of Bangladesh and well-known for its ethnomedicinal uses. In this study, we have evaluated the ability of powdered supplementation, methanol extract, and aqueous extract of A. spinosus in attenuating in high-carbohydrate-high-fat (HCHF) diet-induced obesity and associated metabolic disorders in female obese rates. Several parameters have been analyzed in this study including body weight, organ weight, fat deposition, glycemic status, lipid levels, hepatic and renal biomarkers, hepatic antioxidant status, and hepatosteatosis. All three samples of A. spinosus significantly reduced weight gain, organ weight, and abdominal fat deposition. Improved glucose tolerance and lipid parameters were seen in obese rats administered with A. spinosus powder, methanol extract, and aqueous extract. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and creatine kinase levels were normalized by the test samples. A. spinosus boosted hepatic antioxidant levels including reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Histopathology of liver tissue revealed increased fat infiltration and higher steatosis score in HCHF diet-fed obese rats which was brought down by A. spinosus. Analyzing all the results it can be concluded that this medicinal herb is beneficial in the management of obesity and obesity-induced metabolic disorders, making it a prospective food supplement.

20.
Front Pharmacol ; 11: 565, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477108

RESUMO

The Solanaceae is an important plant family that has been playing an essential role in traditional medicine and human nutrition. Members of the Solanaceae are rich in bioactive metabolites and have been used by different tribes around the world for ages. Antimicrobial peptides (AMPs) from plants have drawn great interest in recent years and raised new hope for developing new antimicrobial agents for meeting the challenges of antibiotic resistance. This review aims to summarize the reported AMPs from plants of the Solanaceae with possible molecular mechanisms of action as well as to correlate their traditional uses with reported antimicrobial actions of the peptides. A systematic literature study was conducted using different databases until August 2019 based on the inclusion and exclusion criteria. According to literature, a variety of AMPs including defensins, protease inhibitor, lectins, thionin-like peptides, vicilin-like peptides, and snaking were isolated from plants of the Solanaceae and were involved in their defense mechanism. These peptides exhibited significant antibacterial, antifungal and antiviral activity against organisms for both plant and human host. Brugmansia, Capsicum, Datura, Nicotiana, Salpichora, Solanum, Petunia, and Withania are the most commonly studied genera for AMPs. Among these genera, Capsicum and the Solanum ranked top according to the total number of studies (35%-38% studies) for different AMPs. The mechanisms of action of the reported AMPs from Solanaceae was not any new rather similar to other reported AMPs including alteration of membrane potential and permeability, membrane pore formation, and cell aggregation. Whereas, induction of cell membrane permiabilization, inhibition of germination and alteration of hyphal growth were reported as mechanisms of antifungal activity. Plants of the Solanaceae have been used traditionally as antimicrobial, insecticidal, and antiinfectious agents, and as poisons. The reported AMPs from the Solanaceae are the products of chemical shields to protect plants from microorganisms and pests which unfold an obvious link with their traditional medicinal use. In summary, it is evident that AMPs from this family possess considerable antimicrobial activity against a wide range of bacterial and fungal pathogens and can be regarded as a potential source for lead molecules to develop new antimicrobial agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA