Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Biol Chem ; 300(1): 105522, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043798

RESUMO

Notch signaling plays a critical role in cell fate decisions in all cell types. Furthermore, gain-of-function mutations in NOTCH1 have been uncovered in many human cancers. Disruption of Notch signaling has recently emerged as an attractive disease treatment strategy. However, the nuclear interaction landscape of the oncoprotein NOTCH1 remains largely unexplored. We therefore employed here a proximity-dependent biotin identification approach to identify in vivo protein associations with the nuclear Notch1 intracellular domain in live cells. We identified a large set of previously reported and unreported proteins that associate with NOTCH1, including general transcription and elongation factors, DNA repair and replication factors, coactivators, corepressors, and components of the NuRD and SWI/SNF chromatin remodeling complexes. We also found that Notch1 intracellular domain associates with protein modifiers and components of other signaling pathways that may influence Notch signal transduction and protein stability such as USP7. We further validated the interaction of NOTCH1 with histone deacetylase 1 or GATAD2B using protein network analysis, proximity-based ligation, in vivo cross-linking and coimmunoprecipitation assays in several Notch-addicted cancer cell lines. Through data mining, we also revealed potential drug targets for the inhibition of Notch signaling. Collectively, these results provide a valuable resource to uncover the mechanisms that fine-tune Notch signaling in tumorigenesis and inform therapeutic targets for Notch-addicted tumors.


Assuntos
Carcinogênese , Neoplasias , Proteínas Oncogênicas , Receptor Notch1 , Humanos , Diferenciação Celular , Linhagem Celular , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Peptidase 7 Específica de Ubiquitina/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
2.
J Cell Sci ; 133(16)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32817163

RESUMO

Barrier-to-autointegration factor (BAF; encoded by BANF1) is a small highly conserved, ubiquitous and self-associating protein that coordinates with numerous binding partners to accomplish several key cellular processes. By interacting with double-stranded DNA, histones and various other nuclear proteins, including those enriched at the nuclear envelope, BAF appears to be essential for replicating cells to protect the genome and enable cell division. Cellular processes, such as innate immunity, post-mitotic nuclear reformation, repair of interphase nuclear envelope rupture, genomic regulation, and the DNA damage and repair response have all been shown to depend on BAF. This Review focuses on the regulation of the numerous interactions of BAF, which underlie the mechanisms by which BAF accomplishes its essential cellular functions. We will also discuss how perturbation of BAF function may contribute to human disease.


Assuntos
Proteínas de Ligação a DNA , Proteínas Nucleares , Núcleo Celular , Humanos , Interfase , Membrana Nuclear , Proteínas Nucleares/genética
3.
Blood ; 132(24): 2564-2574, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30257881

RESUMO

The mechanistic target of rapamycin (mTOR) is a central regulator of cellular proliferation and metabolism. Depending on its binding partners, mTOR is at the core of 2 complexes that either promote protein biosynthesis (mTOR complex 1; mTORC1) or provide survival and proliferation signals (mTORC2). Protein biosynthesis downstream of mTORC1 plays an important role in MYC-driven oncogenesis with translation inhibitors garnering increasing therapeutic attention. The germinal center B-cell oncogene UCHL1 encodes a deubiquitinating enzyme that regulates the balance between mTOR complexes by disrupting mTORC1 and promoting mTORC2 assembly. While supporting mTORC2-dependent growth and survival signals may contribute to its role in cancer, the suppression of mTORC1 activity is enigmatic, as its phosphorylation of its substrate 4EBP1 promotes protein biosynthesis. To address this, we used proximity-based proteomics to identify molecular complexes with which UCH-L1 associates in malignant B cells. We identified a novel association of UCH-L1 with the translation initiation complex eIF4F, the target of 4EBP1. UCH-L1 associates with and promotes the assembly of eIF4F and stimulates protein synthesis through a mechanism that requires its catalytic activity. Because of the importance of mTOR in MYC-driven oncogenesis, we used novel mutant Uchl1 transgenic mice and found that catalytic activity is required for its acceleration of lymphoma in the Eµ-myc model. Further, we demonstrate that mice lacking UCH-L1 are resistant to MYC-induced lymphomas. We conclude that UCH-L1 bypasses the need for mTORC1-dependent protein synthesis by directly promoting translation initiation, and that this mechanism may be essential for MYC in B-cell malignancy.


Assuntos
Transformação Celular Neoplásica/metabolismo , Linfoma de Células B/metabolismo , Proteínas de Neoplasias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Linfoma de Células B/genética , Linfoma de Células B/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Fosforilação , Serina-Treonina Quinases TOR/genética , Ubiquitina Tiolesterase/genética
4.
Proc Natl Acad Sci U S A ; 112(18): 5720-5, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25901323

RESUMO

How cells maintain nuclear shape and position against various intracellular and extracellular forces is not well understood, although defects in nuclear mechanical homeostasis are associated with a variety of human diseases. We estimated the force required to displace and deform the nucleus in adherent living cells with a technique to locally pull the nuclear surface. A minimum pulling force of a few nanonewtons--far greater than typical intracellular motor forces--was required to significantly displace and deform the nucleus. Upon force removal, the original shape and position were restored quickly within a few seconds. This stiff, elastic response required the presence of vimentin, lamin A/C, and SUN (Sad1p, UNC-84)-domain protein linkages, but not F-actin or microtubules. Although F-actin and microtubules are known to exert mechanical forces on the nuclear surface through molecular motor activity, we conclude that the intermediate filament networks maintain nuclear mechanical homeostasis against localized forces.


Assuntos
Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Homeostase , Actinas/química , Actinas/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular , Citoesqueleto/metabolismo , Elasticidade , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Micromanipulação , Microscopia de Fluorescência , Microtúbulos/metabolismo , Células NIH 3T3 , Membrana Nuclear/metabolismo , RNA Interferente Pequeno/metabolismo
5.
J Cell Sci ; 128(10): 1901-11, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25908852

RESUMO

Nuclear positioning is a crucial cell function, but how a migrating cell positions its nucleus is not understood. Using traction-force microscopy, we found that the position of the nucleus in migrating fibroblasts closely coincided with the center point of the traction-force balance, called the point of maximum tension (PMT). Positioning of the nucleus close to the PMT required nucleus-cytoskeleton connections through linker of nucleoskeleton-to-cytoskeleton (LINC) complexes. Although the nucleus briefly lagged behind the PMT following spontaneous detachment of the uropod during migration, the nucleus quickly repositioned to the PMT within a few minutes. Moreover, traction-generating spontaneous protrusions deformed the nearby nucleus surface to pull the nuclear centroid toward the new PMT, and subsequent retraction of these protrusions relaxed the nuclear deformation and restored the nucleus to its original position. We propose that the protruding or retracting cell boundary transmits a force to the surface of the nucleus through the intervening cytoskeletal network connected by the LINC complexes, and that these forces help to position the nucleus centrally and allow the nucleus to efficiently propagate traction forces across the length of the cell during migration.


Assuntos
Núcleo Celular/fisiologia , Citoesqueleto/fisiologia , Fibroblastos/citologia , Animais , Movimento Celular , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Humanos , Camundongos , Células NIH 3T3
6.
Am J Med Genet A ; 173(5): 1200-1207, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28371199

RESUMO

Pathogenic variants in PHOX2B lead to congenital central hypoventilation syndrome (CCHS), a rare disorder of the nervous system characterized by autonomic dysregulation and hypoventilation typically presenting in the neonatal period, although a milder late-onset (LO) presentation has been reported. More than 90% of cases are caused by polyalanine repeat mutations (PARMs) in the C-terminus of the protein; however non-polyalanine repeat mutations (NPARMs) have been reported. Most NPARMs are located in exon 3 of PHOX2B and result in a more severe clinical presentation including Hirschsprung disease (HSCR) and/or peripheral neuroblastic tumors (PNTs). A previously reported nonsense pathogenic variant in exon 1 of a patient with LO-CCHS and no HSCR or PNTs leads to translational reinitiation at a downstream AUG codon producing an N-terminally truncated protein. Here we report additional individuals with nonsense pathogenic variants in exon 1 of PHOX2B. In vitro analyses were used to determine if these and other reported nonsense variants in PHOX2B exon 1 produced N-terminally truncated proteins. We found that all tested nonsense variants in PHOX2B exon 1 produced a truncated protein of the same size. This truncated protein localized to the nucleus and transactivated a target promoter. These data suggest that nonsense pathogenic variants in the first exon of PHOX2B likely escape nonsense mediated decay (NMD) and produce N-terminally truncated proteins functionally distinct from those produced by the more common PARMs.


Assuntos
Doença de Hirschsprung/genética , Proteínas de Homeodomínio/genética , Hipoventilação/congênito , Biossíntese de Proteínas , Apneia do Sono Tipo Central/genética , Fatores de Transcrição/genética , Códon sem Sentido/genética , Éxons/genética , Doença de Hirschsprung/patologia , Humanos , Hipoventilação/genética , Hipoventilação/patologia , Mutação , Peptídeos/genética , Regiões Promotoras Genéticas , Sequências Repetitivas de Aminoácidos/genética , Apneia do Sono Tipo Central/patologia
7.
Proc Natl Acad Sci U S A ; 111(24): E2453-61, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24927568

RESUMO

Proximity-dependent biotin identification (BioID) is a method for identifying protein associations that occur in vivo. By fusing a promiscuous biotin ligase to a protein of interest expressed in living cells, BioID permits the labeling of proximate proteins during a defined labeling period. In this study we used BioID to study the human nuclear pore complex (NPC), one of the largest macromolecular assemblies in eukaryotes. Anchored within the nuclear envelope, NPCs mediate the nucleocytoplasmic trafficking of numerous cellular components. We applied BioID to constituents of the Nup107-160 complex and the Nup93 complex, two conserved NPC subcomplexes. A strikingly different set of NPC constituents was detected depending on the position of these BioID-fusion proteins within the NPC. By applying BioID to several constituents located throughout the extremely stable Nup107-160 subcomplex, we refined our understanding of this highly conserved subcomplex, in part by demonstrating a direct interaction of Nup43 with Nup85. Furthermore, by using the extremely stable Nup107-160 structure as a molecular ruler, we defined the practical labeling radius of BioID. These studies further our understanding of human NPC organization and demonstrate that BioID is a valuable tool for exploring the constituency and organization of large protein assemblies in living cells.


Assuntos
Biotina/química , Biotinilação , Carbono-Nitrogênio Ligases/química , Ligases/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , Poro Nuclear/química , Algoritmos , Núcleo Celular/metabolismo , Cromatografia Líquida , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/química , Células HEK293 , Humanos , Glicoproteínas de Membrana/química , Membrana Nuclear/metabolismo , Ligação Proteica , Estreptavidina/química , Espectrometria de Massas em Tandem , Transfecção
8.
Biol Chem ; 396(4): 295-310, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25720065

RESUMO

Cell nuclei are physically integrated with the cytoskeleton through the linker of nucleoskeleton and cytoskeleton (LINC) complex, a structure that spans the nuclear envelope to link the nucleoskeleton and cytoskeleton. Outer nuclear membrane KASH domain proteins and inner nuclear membrane SUN domain proteins interact to form the core of the LINC complex. In this review, we provide a comprehensive analysis of the reported protein-protein interactions for KASH and SUN domain proteins. This critical structure, directly connecting the genome with the rest of the cell, contributes to a myriad of cellular functions and, when perturbed, is associated with human disease.


Assuntos
Citoesqueleto/metabolismo , Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Mapas de Interação de Proteínas , Animais , Citoesqueleto/química , Humanos , Matriz Nuclear/química , Proteínas Nucleares/análise
9.
Cell Mol Life Sci ; 70(19): 3657-64, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23420482

RESUMO

Various methods have been established for the purpose of identifying and characterizing protein-protein interactions (PPIs). This diverse toolbox provides researchers with options to overcome challenges specific to the nature of the proteins under investigation. Among these techniques is a category based on proximity-dependent labeling of proteins in living cells. These can be further partitioned into either hypothesis-based or unbiased screening methods, each with its own advantages and limitations. Approaches in which proteins of interest are fused to either modifying enzymes or receptor sequences allow for hypothesis-based testing of protein proximity. Protein crosslinking and BioID (proximity-dependent biotin identification) permit unbiased screening of protein proximity for a protein of interest. Here, we evaluate these approaches and their applications in living eukaryotic cells.


Assuntos
Células Eucarióticas/química , Células Eucarióticas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Coloração e Rotulagem/métodos , Humanos
10.
Eukaryot Cell ; 12(2): 356-67, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23264645

RESUMO

The trypanosomes are a family of parasitic protists of which the African trypanosome, Trypanosoma brucei, is the best characterized. The complex and highly ordered cytoskeleton of T. brucei has been shown to play vital roles in its biology but remains difficult to study, in large part owing to the intractability of its constituent proteins. Existing methods of protein identification, such as bioinformatic analysis, generation of monoclonal antibody panels, proteomics, affinity purification, and yeast two-hybrid screens, all have drawbacks. Such deficiencies-troublesome proteins and technical limitations-are common not only to T. brucei but also to many other protists, many of which are even less well studied. Proximity-dependent biotin identification (BioID) is a recently developed technique that allows forward screens for interaction partners and near neighbors in a native environment with no requirement for solubility in nonionic detergent. As such, it is extremely well suited to the exploration of the cytoskeleton. In this project, BioID was adapted for use in T. brucei. The trypanosome bilobe, a discrete cytoskeletal structure with few known protein components, represented an excellent test subject. Use of the bilobe protein TbMORN1 as a probe resulted in the identification of seven new bilobe constituents and two new flagellum attachment zone proteins. This constitutes the first usage of BioID on a largely uncharacterized structure, and demonstrates its utility in identifying new components of such a structure. This remarkable success validates BioID as a new tool for the study of unicellular eukaryotes in particular and the eukaryotic cytoskeleton in general.


Assuntos
Biotinilação , Proteínas do Citoesqueleto/metabolismo , Mapeamento de Interação de Proteínas , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteínas do Citoesqueleto/isolamento & purificação , Ligação Proteica , Transporte Proteico , Proteínas de Protozoários/isolamento & purificação
11.
J Cell Biol ; 223(7)2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683248

RESUMO

Nucleocytoplasmic transport (NCT), the facilitated diffusion of cargo molecules between the nucleus and cytoplasm through nuclear pore complexes (NPCs), enables numerous fundamental eukaryotic cellular processes. Ran GTPase uses cellular energy in the direct form of GTP to create a gradient across the nuclear envelope (NE) that drives the majority of NCT. We report here that changes in GTP availability resulting from altered cellular physiology modulate the rate of NCT, as monitored using synthetic and natural cargo, and the dynamics of Ran itself. Cell migration, cell spreading, and/or modulation of the cytoskeleton or its connection to the nucleus alter GTP availability and thus rates of NCT, regulating RNA export and protein synthesis. These findings support a model in which changes in cellular physiology that alter GTP availability can regulate the rate of NCT, impacting fundamental cellular processes that extensively utilize NCT.


Assuntos
Transporte Ativo do Núcleo Celular , Guanosina Trifosfato , Proteína ran de Ligação ao GTP , Guanosina Trifosfato/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Proteína ran de Ligação ao GTP/genética , Humanos , Núcleo Celular/metabolismo , Movimento Celular , Poro Nuclear/metabolismo , Poro Nuclear/genética , Animais , Membrana Nuclear/metabolismo , Citoesqueleto/metabolismo , Biossíntese de Proteínas , Citoplasma/metabolismo
12.
Life Sci Alliance ; 7(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38199845

RESUMO

Protein ubiquitylation regulates key biological processes including transcription. This is exemplified by the E3 ubiquitin ligase RNF12/RLIM, which controls developmental gene expression by ubiquitylating the REX1 transcription factor and is mutated in an X-linked intellectual disability disorder. However, the precise mechanisms by which ubiquitylation drives specific transcriptional responses are not known. Here, we show that RNF12 is recruited to specific genomic locations via a consensus sequence motif, which enables co-localisation with REX1 substrate at gene promoters. Surprisingly, RNF12 chromatin recruitment is achieved via a non-catalytic basic region and comprises a previously unappreciated N-terminal autoinhibitory mechanism. Furthermore, RNF12 chromatin targeting is critical for REX1 ubiquitylation and downstream RNF12-dependent gene regulation. Our results demonstrate a key role for chromatin in regulation of the RNF12-REX1 axis and provide insight into mechanisms by which protein ubiquitylation enables programming of gene expression.


Assuntos
Cromatina , Deficiência Intelectual , Humanos , Cromatina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Genômica
13.
bioRxiv ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38187776

RESUMO

The nuclear envelope (NE) creates a barrier between the cytosol and nucleus during interphase that is key for cellular compartmentalization and protecting genomic DNA. NE rupture can expose genomic DNA to the cytosol and allow admixture of the nuclear and cytosolic constituents, a proposed mechanism of cancer and NE-associated diseases. Barrier-to-autointegration factor (BAF) is a DNA-binding protein that localizes to NE ruptures where it recruits LEM-domain proteins, A-type lamins, and participates in rupture repair. To further reveal the mechanisms by which BAF responds to and aids in repairing NE ruptures, we investigated known properties of BAF including LEM domain binding, lamin binding, compartmentalization, phosphoregulation of DNA binding, and BAF dimerization. We demonstrate that it is the cytosolic population of BAF that functionally repairs NE ruptures, and phosphoregulation of BAF's DNA-binding that enables its ability to facilitate that repair. Interestingly, BAF's LEM or lamin binding activity appears dispensable for its role in functional repair. Furthermore, we demonstrate that BAF functions to reduce the extent of leakage though NE ruptures, suggesting that BAF effectively forms a diffusion barrier prior to NE repair. Collectively, these results enhances our knowledge of the mechanisms by which BAF responds to NE ruptures and facilitates their repair.

14.
bioRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234722

RESUMO

Nucleocytoplasmic transport (NCT), the facilitated diffusion of cargo molecules between the nucleus and cytoplasm through nuclear pore complexes (NPCs), enables numerous fundamental eukaryotic cellular processes. Ran GTPase uses cellular energy in the direct form of GTP to create a gradient across the nuclear envelope (NE) that drives the majority of NCT. We report here that changes in GTP availability resulting from altered cellular physiology modulate the rate of NCT, as monitored using synthetic and natural cargo, and the dynamics of Ran itself. Cell migration, cell spreading and/or modulation of the cytoskeleton or its connection to the nucleus alter GTP availability and thus rates of NCT, regulating RNA export and protein synthesis. These findings support a model in which changes in cellular physiology that alter GTP availability can regulate the rate of NCT, impacting fundamental cellular processes that extensively utilize NCT.

15.
J Biol Chem ; 286(30): 26743-53, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21652697

RESUMO

Maintaining physical connections between the nucleus and the cytoskeleton is important for many cellular processes that require coordinated movement and positioning of the nucleus. Nucleo-cytoskeletal coupling is also necessary to transmit extracellular mechanical stimuli across the cytoskeleton to the nucleus, where they may initiate mechanotransduction events. The LINC (Linker of Nucleoskeleton and Cytoskeleton) complex, formed by the interaction of nesprins and SUN proteins at the nuclear envelope, can bind to nuclear and cytoskeletal elements; however, its functional importance in transmitting intracellular forces has never been directly tested. This question is particularly relevant since recent findings have linked nesprin mutations to muscular dystrophy and dilated cardiomyopathy. Using biophysical assays to assess intracellular force transmission and associated cellular functions, we identified the LINC complex as a critical component for nucleo-cytoskeletal force transmission. Disruption of the LINC complex caused impaired propagation of intracellular forces and disturbed organization of the perinuclear actin and intermediate filament networks. Although mechanically induced activation of mechanosensitive genes was normal (suggesting that nuclear deformation is not required for mechanotransduction signaling) cells exhibited other severe functional defects after LINC complex disruption; nuclear positioning and cell polarization were impaired in migrating cells and in cells plated on micropatterned substrates, and cell migration speed and persistence time were significantly reduced. Taken together, our findings suggest that the LINC complex is critical for nucleo-cytoskeletal force transmission and that LINC complex disruption can result in defects in cellular structure and function that may contribute to the development of muscular dystrophies and cardiomyopathies.


Assuntos
Citoesqueleto/metabolismo , Mecanotransdução Celular/fisiologia , Complexos Multiproteicos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Linhagem Celular Transformada , Citoesqueleto/genética , Humanos , Camundongos , Complexos Multiproteicos/genética , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Membrana Nuclear/genética , Proteínas Nucleares/genética
16.
J Cell Biol ; 178(5): 785-98, 2007 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-17724119

RESUMO

Sun1 and 2 are A-type lamin-binding proteins that, in association with nesprins, form a link between the inner nuclear membranes (INMs) and outer nuclear membranes of mammalian nuclear envelopes. Both immunofluorescence and immunoelectron microscopy reveal that Sun1 but not Sun2 is intimately associated with nuclear pore complexes (NPCs). Topological analyses indicate that Sun1 is a type II integral protein of the INM. Localization of Sun1 to the INM is defined by at least two discrete regions within its nucleoplasmic domain. However, association with NPCs is dependent on the synergy of both nucleoplasmic and lumenal domains. Cells that are either depleted of Sun1 by RNA interference or that overexpress dominant-negative Sun1 fragments exhibit clustering of NPCs. The implication is that Sun1 represents an important determinant of NPC distribution across the nuclear surface.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Motivos de Aminoácidos , Animais , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Estrutura Quaternária de Proteína , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
17.
Proc Natl Acad Sci U S A ; 106(7): 2194-9, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19164528

RESUMO

Nucleocytoplasmic coupling is mediated by outer nuclear membrane (ONM) nesprin proteins and inner nuclear membrane Sun proteins. Interactions spanning the perinuclear space create nesprin-Sun complexes connecting the cytoskeleton to nuclear components. A search for proteins displaying a conserved C-terminal sequence present in nesprins 1-3 identified nesprin 4 (Nesp4), a new member of this family. Nesp4 is a kinesin-1-binding protein that displays Sun-dependent localization to the ONM. Expression of Nesp4 is associated with dramatic changes in cellular organization involving relocation of the centrosome and Golgi apparatus relative to the nucleus. These effects can be accounted for entirely by Nesp4's kinesin-binding function. The implication is that Nesp4 may contribute to microtubule-dependent nuclear positioning.


Assuntos
Cinesinas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Proteínas Nucleares/fisiologia , Sequência de Aminoácidos , Animais , Centrossomo/metabolismo , Proteínas de Fluorescência Verde/química , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/química , Modelos Biológicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
18.
Cells ; 11(5)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269487

RESUMO

Mutations in the genes LMNA and BANF1 can lead to accelerated aging syndromes called progeria. The protein products of these genes, A-type lamins and BAF, respectively, are nuclear envelope (NE) proteins that interact and participate in various cellular processes, including nuclear envelope rupture and repair. BAF localizes to sites of nuclear rupture and recruits NE-repair machinery, including the LEM-domain proteins, ESCRT-III complex, A-type lamins, and membranes. Here, we show that it is a mobile, nucleoplasmic population of A-type lamins that is rapidly recruited to ruptures in a BAF-dependent manner via BAF's association with the Ig-like ß fold domain of A-type lamins. These initially mobile lamins become progressively stabilized at the site of rupture. Farnesylated prelamin A and lamin B1 fail to localize to nuclear ruptures, unless that farnesylation is inhibited. Progeria-associated LMNA mutations inhibit the recruitment affected A-type lamin to nuclear ruptures, due to either permanent farnesylation or inhibition of BAF binding. A progeria-associated BAF mutant targets to nuclear ruptures but is unable to recruit A-type lamins. Together, these data reveal the mechanisms that determine how lamins respond to nuclear ruptures and how progeric mutations of LMNA and BANF1 impair recruitment of A-type lamins to nuclear ruptures.


Assuntos
Progéria , Núcleo Celular/metabolismo , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Mutação/genética , Membrana Nuclear/metabolismo , Progéria/genética , Progéria/metabolismo
19.
Adv Sci (Weinh) ; 9(23): e2201248, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35712768

RESUMO

Migrating cells must deform their stiff cell nucleus to move through pores and fibers in tissue. Lamin A/C is known to hinder cell migration by limiting nuclear deformation and passage through confining channels, but its role in nuclear deformation and passage through fibrous environments is less clear. Cell and nuclear migration through discrete, closely spaced, slender obstacles which mimic the mechanical properties of collagen fibers are studied. Nuclei bypass slender obstacles while preserving their overall morphology by deforming around them with deep local invaginations of little resisting force. The obstacles do not impede the nuclear trajectory and do not cause rupture of the nuclear envelope. Nuclei likewise deform around single collagen fibers in cells migrating in 3D collagen gels. In contrast to its limiting role in nuclear passage through confining channels, lamin A/C facilitates nuclear deformation and passage through fibrous environments; nuclei in lamin-null (Lmna-/- ) cells lose their overall morphology and become entangled on the obstacles. Analogous to surface tension-mediated deformation of a liquid drop, lamin A/C imparts a surface tension on the nucleus that allows nuclear invaginations with little mechanical resistance, preventing nuclear entanglement and allowing nuclear passage through fibrous environments.


Assuntos
Núcleo Celular , Lamina Tipo A , Núcleo Celular/metabolismo , Colágeno , Lamina Tipo A/metabolismo , Membrana Nuclear/metabolismo , Tensão Superficial
20.
Viruses ; 14(3)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337019

RESUMO

The novel coronavirus SARS-CoV-2 is responsible for the ongoing COVID-19 pandemic and has caused a major health and economic burden worldwide. Understanding how SARS-CoV-2 viral proteins behave in host cells can reveal underlying mechanisms of pathogenesis and assist in development of antiviral therapies. Here, the cellular impact of expressing SARS-CoV-2 viral proteins was studied by global proteomic analysis, and proximity biotinylation (BioID) was used to map the SARS-CoV-2 virus-host interactome in human lung cancer-derived cells. Functional enrichment analyses revealed previously reported and unreported cellular pathways that are associated with SARS-CoV-2 proteins. We have established a website to host the proteomic data to allow for public access and continued analysis of host-viral protein associations and whole-cell proteomes of cells expressing the viral-BioID fusion proteins. Furthermore, we identified 66 high-confidence interactions by comparing this study with previous reports, providing a strong foundation for future follow-up studies. Finally, we cross-referenced candidate interactors with the CLUE drug library to identify potential therapeutics for drug-repurposing efforts. Collectively, these studies provide a valuable resource to uncover novel SARS-CoV-2 biology and inform development of antivirals.


Assuntos
COVID-19 , SARS-CoV-2 , Biotinilação , Humanos , Pandemias , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA