Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
Mol Psychiatry ; 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39472664

RESUMO

The innate immune system plays an integral role in the progression of many neurodegenerative diseases. In addition to central innate immune cells (e.g., microglia), peripheral innate immune cells (e.g., blood monocytes, natural killer cells, and dendritic cells) may also differ in these conditions. However, the characterization of peripheral innate immune cell types across different neurodegenerative diseases remains incomplete. This study aimed to characterize peripheral innate immune profiles using flow cytometry for immunophenotyping of peripheral blood mononuclear cells in n = 148 people with Alzheimer's disease (AD), frontotemporal dementia (FTD), corticobasal syndrome (CBS), progressive supranuclear palsy (PSP), Lewy body dementia (LBD) as compared to n = 37 healthy controls. To compare groups, we used multivariate dissimilarity analysis and principal component analysis across 19 innate immune cell types. We identified pro-inflammatory profiles that significantly differ between patients with all-cause dementia and healthy controls, with some significant differences between patient groups. Regression analysis confirmed that time to death following the blood test correlated with the individuals' immune profile weighting, positively to TREM2+ and non-classical monocytes and negatively to classical monocytes. Taken together, these results describe transdiagnostic peripheral immune profiles and highlight the link between prognosis and the monocyte cellular subdivision and function (as measured by surface protein expression). The results suggest that blood-derived innate immune profiles can inform sub-populations of cells relevant for specific neurodegenerative diseases that are significantly linked to accelerated disease progression and worse survival outcomes across diagnoses. Blood-based innate immune profiles may contribute to enhanced precision medicine approaches in dementia, helping to identify and monitor therapeutic targets and stratify patients for candidate immunotherapies.

2.
Brain ; 147(6): 1953-1966, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38334506

RESUMO

Impaired social cognition is a core deficit in frontotemporal dementia (FTD). It is most commonly associated with the behavioural-variant of FTD, with atrophy of the orbitofrontal and ventromedial prefrontal cortex. Social cognitive changes are also common in semantic dementia, with atrophy centred on the anterior temporal lobes. The impairment of social behaviour in FTD has typically been attributed to damage to the orbitofrontal cortex and/or temporal poles and/or the uncinate fasciculus that connects them. However, the relative contributions of each region are unresolved. In this review, we present a unified neurocognitive model of controlled social behaviour that not only explains the observed impairment of social behaviours in FTD, but also assimilates both consistent and potentially contradictory findings from other patient groups, comparative neurology and normative cognitive neuroscience. We propose that impaired social behaviour results from damage to two cognitively- and anatomically-distinct components. The first component is social-semantic knowledge, a part of the general semantic-conceptual system supported by the anterior temporal lobes bilaterally. The second component is social control, supported by the orbitofrontal cortex, medial frontal cortex and ventrolateral frontal cortex, which interacts with social-semantic knowledge to guide and shape social behaviour.


Assuntos
Demência Frontotemporal , Comportamento Social , Humanos , Demência Frontotemporal/patologia , Demência Frontotemporal/psicologia , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/fisiopatologia , Cognição Social , Cognição/fisiologia
3.
Brain ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018014

RESUMO

Clinical variants of Alzheimer's disease and frontotemporal lobar degeneration display a spectrum of cognitive-behavioural changes varying between individuals and over time. Understanding the landscape of these graded individual-/group-level longitudinal variations is critical for precise phenotyping; however, this remains challenging to model. Addressing this challenge, we leverage the National Alzheimer's Coordinating Center database to derive a unified geometric framework of graded longitudinal phenotypic variation in Alzheimer's disease and frontotemporal lobar degeneration. We included three time-point, cognitive-behavioural and clinical data from 390 typical, atypical and intermediate Alzheimer's disease and frontotemporal lobar degeneration variants (114 typical Alzheimer's disease; 107 behavioural variant frontotemporal dementia; 42 motor variants of frontotemporal lobar degeneration; and 103 primary progressive aphasia patients). On this data, we applied advanced data-science approaches to derive low-dimensional geometric spaces capturing core features underpinning clinical progression of Alzheimer's disease and frontotemporal lobar degeneration syndromes. To do so, we first used principal component analysis to derive six axes of graded longitudinal phenotypic variation capturing patient-specific movement along and across these axes. Then, we distilled these axes into a visualisable 2D manifold of longitudinal phenotypic variation using Uniform Manifold Approximation and Projection. Both geometries together enabled the assimilation and inter-relation of paradigmatic and mixed cases, capturing dynamic individual trajectories, and linking syndromic variability to neuropathology and key clinical end-points such as survival. Through these low-dimensional geometries, we show that (i) specific syndromes (Alzheimer's disease and primary progressive aphasia) converge over time into a de-differentiated pooled phenotype, while others (frontotemporal dementia variants) diverge to look different from this generic phenotype; (ii) phenotypic diversification is predicted by simultaneous progression along multiple axes, varying in a graded manner between individuals and syndromes; and (iii) movement along specific principal axes predicts survival at 36 months in a syndrome-specific manner and in individual pathological groupings. The resultant mapping of dynamics underlying cognitive-behavioural evolution potentially holds paradigm-changing implications to predicting phenotypic diversification and phenotype-neurobiological mapping in Alzheimer's disease and frontotemporal lobar degeneration.

4.
Brain ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155063

RESUMO

Neuroinflammation is an important pathogenic mechanism in many neurodegenerative diseases, including those caused by frontotemporal lobar degeneration (FTLD). Postmortem and in vivo imaging studies have shown brain inflammation early in these conditions, proportionate to symptom severity and rate of progression. However, evidence for corresponding blood markers of inflammation and their relationship with central inflammation and clinical outcome are limited. There is a pressing need for such scalable, accessible and mechanistically relevant blood markers as these will reduce the time, risk, and costs of experimental medicine trials. We therefore assessed inflammatory patterns of serum cytokines from 214 patients with clinical syndromes associated with FTLD as compared to healthy controls, including their correlation with brain regional microglial activation and disease progression. Serum assays used the MesoScale Discovery V-Plex-Human Cytokine 36 plex panel plus five additional cytokine assays. A sub-group of patients underwent 11C-PK11195 TSPO PET imaging, as an index of microglial activation. A Principal Component Analysis (PCA) was used to reduce the dimensionality of cytokine data, excluding cytokines that were undetectable in >50% of participants. Frequentist and Bayesian analyses were performed on the principal components, to compare each patient cohort to controls, and test for associations with central inflammation, neurodegeneration-related plasma markers and survival. The first component identified by the PCA (explaining 21.5% variance) was strongly loaded by pro-inflammatory cytokines, including TNF-α, TNF-R1, M-CSF, IL-17A, IL-12, IP-10 and IL-6. Individual scores of the component showed significant differences between each patient cohort and controls. The degree to which a patient expressed this peripheral inflammatory profile at baseline correlated negatively with survival (higher inflammation, shorter survival), even when correcting for baseline clinical severity. Higher pro-inflammatory profile scores were associated with higher microglial activation in frontal and brainstem regions, as quantified with 11C-PK11195 TSPO PET. A permutation-based Canonical Correlation Analysis confirmed the association between the same cytokine-derived pattern and central inflammation across brain regions in a fully data-based manner. This data-driven approach identified a pro-inflammatory profile across the FTLD clinical spectrum, which is associated with central neuroinflammation and worse clinical outcome. Blood-based markers of inflammation could increase the scalability and access to neuroinflammatory assessment of people with dementia, to facilitate clinical trials and experimental medicine studies.

5.
Brain ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375207

RESUMO

Post-mortem studies have shown that patients dying from severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection frequently have pathological changes in their CNS, particularly in the brainstem. Many of these changes are proposed to result from para-infectious and/or post-infection immune responses. Clinical symptoms such as fatigue, breathlessness, and chest pain are frequently reported in post-hospitalized coronavirus disease 2019 (COVID-19) patients. We propose that these symptoms are in part due to damage to key neuromodulatory brainstem nuclei. While brainstem involvement has been demonstrated in the acute phase of the illness, the evidence of long-term brainstem change on MRI is inconclusive. We therefore used ultra-high field (7 T) quantitative susceptibility mapping (QSM) to test the hypothesis that brainstem abnormalities persist in post-COVID patients and that these are associated with persistence of key symptoms. We used 7 T QSM data from 30 patients, scanned 93-548 days after hospital admission for COVID-19 and compared them to 51 age-matched controls without prior history of COVID-19 infection. We correlated the patients' QSM signals with disease severity (duration of hospital admission and COVID-19 severity scale), inflammatory response during the acute illness (C-reactive protein, D-dimer and platelet levels), functional recovery (modified Rankin scale), depression (Patient Health Questionnaire-9) and anxiety (Generalized Anxiety Disorder-7). In COVID-19 survivors, the MR susceptibility increased in the medulla, pons and midbrain regions of the brainstem. Specifically, there was increased susceptibility in the inferior medullary reticular formation and the raphe pallidus and obscurus. In these regions, patients with higher tissue susceptibility had worse acute disease severity, higher acute inflammatory markers, and significantly worse functional recovery. This study contributes to understanding the long-term effects of COVID-19 and recovery. Using non-invasive ultra-high field 7 T MRI, we show evidence of brainstem pathophysiological changes associated with inflammatory processes in post-hospitalized COVID-19 survivors.

6.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39123309

RESUMO

The functional importance of the anterior temporal lobes (ATLs) has come to prominence in two active, albeit unconnected literatures-(i) face recognition and (ii) semantic memory. To generate a unified account of the ATLs, we tested the predictions from each literature and examined the effects of bilateral versus unilateral ATL damage on face recognition, person knowledge, and semantic memory. Sixteen people with bilateral ATL atrophy from semantic dementia (SD), 17 people with unilateral ATL resection for temporal lobe epilepsy (TLE; left = 10, right = 7), and 14 controls completed tasks assessing perceptual face matching, person knowledge and general semantic memory. People with SD were impaired across all semantic tasks, including person knowledge. Despite commensurate total ATL damage, unilateral resection generated mild impairments, with minimal differences between left- and right-ATL resection. Face matching performance was largely preserved but slightly reduced in SD and right TLE. All groups displayed the familiarity effect in face matching; however, it was reduced in SD and right TLE and was aligned with the level of item-specific semantic knowledge in all participants. We propose a neurocognitive framework whereby the ATLs underpin a resilient bilateral representation system that supports semantic memory, person knowledge and face recognition.


Assuntos
Epilepsia do Lobo Temporal , Reconhecimento Facial , Semântica , Lobo Temporal , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Lobo Temporal/cirurgia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Adulto , Reconhecimento Facial/fisiologia , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/psicologia , Epilepsia do Lobo Temporal/fisiopatologia , Reconhecimento Psicológico/fisiologia , Lateralidade Funcional/fisiologia , Testes Neuropsicológicos , Memória/fisiologia , Idoso , Face
7.
J Neurosci ; 43(42): 7028-7040, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37669861

RESUMO

Parkinson's disease (PD) and progressive supranuclear palsy (PSP) both impair response inhibition, exacerbating impulsivity. Inhibitory control deficits vary across individuals and are linked with worse prognosis, and lack improvement on dopaminergic therapy. Motor and cognitive control are associated with noradrenergic innervation of the cortex, arising from the locus coeruleus (LC) noradrenergic system. Here we test the hypothesis that structural variation of the LC explains response inhibition deficits in PSP and PD. Twenty-four people with idiopathic PD, 14 with PSP-Richardson's syndrome, and 24 age- and sex-matched controls undertook a stop-signal task and ultrahigh field 7T magnetization-transfer-weighted imaging of the LC. Parameters of "race models" of go- versus stop-decisions were estimated using hierarchical Bayesian methods to quantify the cognitive processes of response inhibition. We tested the multivariate relationship between LC integrity and model parameters using partial least squares. Both disorders impaired response inhibition at the group level. PSP caused a distinct pattern of abnormalities in inhibitory control with a paradoxically reduced threshold for go responses, but longer nondecision times, and more lapses of attention. The variation in response inhibition correlated with the variability of LC integrity across participants in both clinical groups. Structural imaging of the LC, coupled with behavioral modeling in parkinsonian disorders, confirms that LC integrity is associated with response inhibition and LC degeneration contributes to neurobehavioral changes. The noradrenergic system is therefore a promising target to treat impulsivity in these conditions. The optimization of noradrenergic treatment is likely to benefit from stratification according to LC integrity.SIGNIFICANCE STATEMENT Response inhibition deficits contribute to clinical symptoms and poor outcomes in people with Parkinson's disease and progressive supranuclear palsy. We used cognitive modeling of performance of a response inhibition task to identify disease-specific mechanisms of abnormal inhibitory control. Response inhibition in both patient groups was associated with the integrity of the noradrenergic locus coeruleus, which we measured in vivo using ultra-high field MRI. We propose that the imaging biomarker of locus coeruleus integrity provides a trans-diagnostic tool to explain individual differences in response inhibition ability beyond the classic nosological borders and diagnostic criteria. Our data suggest a potential new stratified treatment approach for Parkinson's disease and progressive supranuclear palsy.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/psicologia , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Locus Cerúleo , Teorema de Bayes
8.
Hum Brain Mapp ; 45(10): e26782, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38989630

RESUMO

This study assesses the reliability of resting-state dynamic causal modelling (DCM) of magnetoencephalography (MEG) under conductance-based canonical microcircuit models, in terms of both posterior parameter estimates and model evidence. We use resting-state MEG data from two sessions, acquired 2 weeks apart, from a cohort with high between-subject variance arising from Alzheimer's disease. Our focus is not on the effect of disease, but on the reliability of the methods (as within-subject between-session agreement), which is crucial for future studies of disease progression and drug intervention. To assess the reliability of first-level DCMs, we compare model evidence associated with the covariance among subject-specific free energies (i.e., the 'quality' of the models) with versus without interclass correlations. We then used parametric empirical Bayes (PEB) to investigate the differences between the inferred DCM parameter probability distributions at the between subject level. Specifically, we examined the evidence for or against parameter differences (i) within-subject, within-session, and between-epochs; (ii) within-subject between-session; and (iii) within-site between-subjects, accommodating the conditional dependency among parameter estimates. We show that for data acquired close in time, and under similar circumstances, more than 95% of inferred DCM parameters are unlikely to differ, speaking to mutual predictability over sessions. Using PEB, we show a reciprocal relationship between a conventional definition of 'reliability' and the conditional dependency among inferred model parameters. Our analyses confirm the reliability and reproducibility of the conductance-based DCMs for resting-state neurophysiological data. In this respect, the implicit generative modelling is suitable for interventional and longitudinal studies of neurological and psychiatric disorders.


Assuntos
Doença de Alzheimer , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Magnetoencefalografia/normas , Reprodutibilidade dos Testes , Doença de Alzheimer/fisiopatologia , Masculino , Feminino , Idoso , Modelos Neurológicos , Teorema de Bayes
9.
Radiology ; 312(1): e232407, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-39012255

RESUMO

Background Impaired glucose metabolism is characteristic of several types of dementia, preceding cognitive symptoms and structural brain changes. Reduced glucose uptake in specific brain regions, detected using fluorine 18 (18F) fluorodeoxyglucose (FDG) PET, is a valuable diagnostic marker in Alzheimer disease (AD). However, the use of 18F-FDG PET in clinical practice may be limited by equipment availability and high cost. Purpose To test the feasibility of using MRI-based deuterium (2H) metabolic imaging (DMI) at a clinical magnetic field strength (3 T) to detect and localize changes in the concentration of glucose and its metabolites in the brains of patients with a clinical diagnosis of AD. Materials and Methods Participants were recruited for this prospective case-control pilot study between March 2021 and February 2023. DMI was performed at 3 T using a custom birdcage head coil following oral administration of deuterium-labeled glucose (0.75 g/kg). Unlocalized whole-brain MR spectroscopy (MRS) and three-dimensional MR spectroscopic imaging (MRSI) (voxel size, 3.2 cm cubic) were performed. Ratios of 2H-glucose, 2H-glutamate and 2H-glutamine (2H-Glx), and 2H-lactate spectroscopic peak signals to 2H-water peak signal were calculated for the whole-brain MR spectra and for individual MRSI voxels. Results A total of 19 participants, including 10 participants with AD (mean age, 68 years ± 5 [SD]; eight males) and nine cognitively healthy control participants (mean age, 70 years ± 6; six males) were evaluated. Whole-brain spectra demonstrated a reduced ratio of 2H-Glx to 2H-glucose peak signals in participants with AD compared with control participants (0.41 ± 0.09 vs 0.58 ± 0.20, respectively; P = .04), suggesting an impairment of oxidative glucose metabolism in AD. However, there was no evidence of localization of these changes to the expected regions of metabolic impairment at MRSI, presumably due to insufficient spatial resolution. Conclusion DMI at 3 T demonstrated impairment of oxidative glucose metabolism in the brains of patients with AD but no evidence of regional signal differences. © RSNA, 2024 Supplemental material is available for this article.


Assuntos
Doença de Alzheimer , Encéfalo , Deutério , Imageamento por Ressonância Magnética , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Projetos Piloto , Masculino , Feminino , Estudos de Casos e Controles , Idoso , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Glucose/metabolismo , Pessoa de Meia-Idade , Estudos de Viabilidade , Idoso de 80 Anos ou mais
10.
Ann Neurol ; 93(1): 142-154, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36321699

RESUMO

OBJECTIVE: Synaptic loss is an early feature of neurodegenerative disease models, and is severe in post mortem clinical studies, including frontotemporal dementia. Positron emission tomography (PET) with radiotracers that bind to synaptic vesicle glycoprotein 2A enables quantification of synaptic density in vivo. This study used [11 C]UCB-J PET in participants with behavioral variant frontotemporal dementia (bvFTD), testing the hypothesis that synaptic loss is severe and related to clinical severity. METHODS: Eleven participants with clinically probable bvFTD and 25 age- and sex-matched healthy controls were included. Participants underwent dynamic [11 C]UCB-J PET, structural magnetic resonance imaging, and a neuropsychological battery, including the revised Addenbrooke Cognitive Examination, and INECO frontal screening. General linear models compared [11 C]UCB-J binding potential maps and gray matter volume between groups, and assessed associations between synaptic density and clinical severity in patients. Analyses were also performed using partial volume corrected [11 C]UCB-J binding potential from regions of interest (ROIs). RESULTS: Patients with bvFTD showed severe synaptic loss compared to controls. [11 C]UCB-J binding was reduced bilaterally in medial and dorsolateral frontal regions, inferior frontal gyri, anterior and posterior cingulate gyrus, insular cortex, and medial temporal lobe. Synaptic loss in the frontal and cingulate regions correlated significantly with cognitive impairments. Synaptic loss was more severe than atrophy. Results from ROI-based analyses mirrored the voxelwise results. INTERPRETATION: In accordance with preclinical models, and human postmortem evidence, there is widespread frontotemporal loss of synapses in symptomatic bvFTD, in proportion to severity. [11 C]UCB-J PET could support translational studies and experimental medicine strategies for new disease-modifying treatments for neurodegeneration. ANN NEUROL 2023;93:142-154.


Assuntos
Demência Frontotemporal , Doenças Neurodegenerativas , Doença de Pick , Humanos , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Lobo Frontal , Encéfalo/metabolismo
11.
Mov Disord ; 39(7): 1166-1178, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38671545

RESUMO

BACKGROUND/OBJECTIVE: The corticobasal syndrome (CBS) is a complex asymmetric movement disorder, with cognitive impairment. Although commonly associated with the primary 4-repeat-tauopathy of corticobasal degeneration, clinicopathological correlation is poor, and a significant proportion is due to Alzheimer's disease (AD). Synaptic loss is a pathological feature of many clinical and preclinical tauopathies. We therefore measured the degree of synaptic loss in patients with CBS and tested whether synaptic loss differed according to ß-amyloid status. METHODS: Twenty-five people with CBS, and 32 age-/sex-/education-matched healthy controls participated. Regional synaptic density was estimated by [11C]UCB-J non-displaceable binding potential (BPND), AD-tau pathology by [18F]AV-1451 BPND, and gray matter volume by T1-weighted magnetic resonance imaging. Participants with CBS had ß-amyloid imaging with 11C-labeled Pittsburgh Compound-B ([11C]PiB) positron emission tomography. Symptom severity was assessed with the progressive supranuclear palsy-rating-scale, the cortical basal ganglia functional scale, and the revised Addenbrooke's Cognitive Examination. Regional differences in BPND and gray matter volume between groups were assessed by ANOVA. RESULTS: Compared to controls, patients with CBS had higher [18F]AV-1451 uptake, gray matter volume loss, and reduced synaptic density. Synaptic loss was more severe and widespread in the ß-amyloid negative group. Asymmetry of synaptic loss was in line with the clinically most affected side. DISCUSSION: Distinct patterns of [11C]UCB-J and [18F]AV-1451 binding and gray matter volume loss, indicate differences in the pathogenic mechanisms of CBS according to whether it is associated with the presence of Alzheimer's disease or not. This highlights the potential for different therapeutic strategies in CBSs. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons , Sinapses , Humanos , Masculino , Feminino , Idoso , Peptídeos beta-Amiloides/metabolismo , Pessoa de Meia-Idade , Sinapses/patologia , Sinapses/metabolismo , Degeneração Corticobasal/patologia , Degeneração Corticobasal/metabolismo , Degeneração Corticobasal/diagnóstico por imagem , Proteínas tau/metabolismo , Imageamento por Ressonância Magnética , Substância Cinzenta/patologia , Substância Cinzenta/metabolismo , Substância Cinzenta/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/diagnóstico por imagem , Carbolinas
12.
Mov Disord ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301998

RESUMO

BACKGROUND: Seed amplification assay (SAA) testing has been developed as a biomarker for the diagnosis of α-synuclein-related neurodegenerative disorders. OBJECTIVE: The objective of this study was to assess the rate of α-synuclein SAA positivity in progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) and to analyze clinical and pathological features of SAA-positive and -negative cases. METHODS: A total of 96 cerebrospinal fluid samples from clinically diagnosed PSP (n = 59) and CBS (n = 37) cases were analyzed using α-synuclein SAA. RESULTS: Six of 59 (10.2%) PSP cases were α-synuclein SAA positive, including one case who was MSA-type positive. An exploratory analysis showed that PSP cases who were Parkinson's disease-type positive were older and had a shorter disease duration compared with SAA-negative cases. In contrast, 11 of 37 (29.7%) CBS cases were α-synuclein SAA positive, including two cases who were MSA-type positive. CONCLUSIONS: Our results suggest that α-synuclein seeds can be detected in PSP and CBS using a cerebrospinal fluid α-synuclein SAA, and in PSP this may impact on clinical course. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

13.
Brain Behav Immun ; 122: 231-240, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39153518

RESUMO

BACKGROUND: Inflammation has been proposed as a crucial player in neurodegeneration, including Frontotemporal Dementia (FTD). A few studies on sporadic FTD lead to inconclusive results, whereas large studies on genetic FTD are lacking. The aim of this study is to determine cytokine and chemokine plasma circulating levels in a large cohort of genetic FTD, collected within the GENetic Frontotemporal dementia Initiative (GENFI). METHODS: Mesoscale technology was used to analyse levels of 30 inflammatory factors in 434 plasma samples, including 94 Symptomatic Mutation carriers [(SMC); 15 with mutations in Microtubule Associated Protein Tau (MAPT) 34 in Progranulin (GRN) and 45 in Chromosome 9 Open Reading Frame (C9ORF)72], 168 Presymptomatic Mutation Carriers (PMC; 34 MAPT, 70 GRN and 64 C9ORF72) and 173 Non-carrier Controls (NC)]. RESULTS: The following cytokines were significantly upregulated (P<0.05) in MAPT and GRN SMC versus NC: Tumor Necrosis Factor (TNF)α, Interleukin (IL)-7, IL-15, IL-16, IL-17A. Moreover, only in GRN SMC, additional factors were upregulated, including: IL-1ß, IL-6, IL-10, IL-12/IL-23p40, eotaxin, eotaxin-3, Interferon γ-induced Protein (IP-10), Monocyte Chemotactic Protein (MCP)4. On the contrary, IL-1α levels were decreased in SMC compared with NC. Significantly decreased levels of this cytokine were also found in PMC, independent of the type of mutation. In SMC, no correlations between disease duration and cytokine and chemokine levels were found. Considering NfL and GFAP levels, as expected, significant increases were observed in SMC as compared to NC. These differences in mean values remain significant even when stratifying symptomatic patients by the mutated gene (P<0.0001). Considering instead the levels of NfL, GFAP, and the altered inflammatory molecules, no significant correlations emerged. CONCLUSION: We showed that inflammatory proteins are upregulated in MAPT and GRN SMC, with some specific factors altered in GRN only, whereas no changes were seen in C9ORF72 carriers. Notably, only IL-1α levels were decreased in both SMC and PMC, independent of the type of causal mutation, suggesting common modifications occurring in the preclinical phase of the disease.


Assuntos
Citocinas , Demência Frontotemporal , Inflamação , Mutação , Progranulinas , Proteínas tau , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Progranulinas/genética , Progranulinas/sangue , Citocinas/sangue , Citocinas/genética , Proteínas tau/sangue , Proteínas tau/genética , Idoso , Inflamação/genética , Inflamação/sangue , Proteína C9orf72/genética , Quimiocinas/sangue , Quimiocinas/genética , Estudos de Coortes , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Heterozigoto
14.
Eur J Neurol ; 31(6): e16258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38407533

RESUMO

BACKGROUND: Multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) show a high prevalence and rapid progression of dysphagia, which is associated with reduced survival. Despite this, the evidence base for gastrostomy is poor, and the optimal frequency and outcomes of this intervention are not known. We aimed to characterise the prevalence and outcomes of gastrostomy in patients with these three atypical parkinsonian disorders. METHOD: We analysed data from the natural history and longitudinal cohorts of the PROSPECT-M-UK study with up to 60 months of follow-up from baseline. Survival post-gastrostomy was analysed using Kaplan-Meier survival curves. RESULTS: In a total of 339 patients (mean age at symptom onset 63.3 years, mean symptom duration at baseline 4.6 years), dysphagia was present in >50% across all disease groups at baseline and showed rapid progression during follow-up. Gastrostomy was recorded as recommended in 44 (13%) and performed in 21 (6.2%; MSA 7, PSP 11, CBS 3) of the total study population. Median survival post-gastrostomy was 24 months compared with 12 months where gastrostomy was recommended but not done (p = 0.008). However, this was not significant when correcting for age and duration of symptoms at the time of procedure or recommendation. CONCLUSIONS: Gastrostomy was performed relatively infrequently in this cohort despite the high prevalence of dysphagia. Survival post-gastrostomy was longer than previously reported, but further data on other outcomes and clinician and patient perspectives would help to guide use of this intervention in MSA, PSP and CBS.


Assuntos
Transtornos de Deglutição , Gastrostomia , Atrofia de Múltiplos Sistemas , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Estudos Longitudinais , Paralisia Supranuclear Progressiva/cirurgia , Atrofia de Múltiplos Sistemas/cirurgia , Atrofia de Múltiplos Sistemas/epidemiologia , Transtornos Parkinsonianos/cirurgia , Transtornos Parkinsonianos/epidemiologia , Transtornos de Deglutição/etiologia , Transtornos de Deglutição/epidemiologia , Estudos de Coortes , Resultado do Tratamento , Progressão da Doença
15.
Brain ; 146(6): 2584-2594, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36514918

RESUMO

Synaptic loss occurs early in many neurodegenerative diseases and contributes to cognitive impairment even in the absence of gross atrophy. Currently, for human disease there are few formal models to explain how cortical networks underlying cognition are affected by synaptic loss. We advocate that biophysical models of neurophysiology offer both a bridge from preclinical to clinical models of pathology and quantitative assays for experimental medicine. Such biophysical models can also disclose hidden neuronal dynamics generating neurophysiological observations such as EEG and magnetoencephalography. Here, we augment a biophysically informed mesoscale model of human cortical function by inclusion of synaptic density estimates as captured by 11C-UCB-J PET, and provide insights into how regional synapse loss affects neurophysiology. We use the primary tauopathy of progressive supranuclear palsy (Richardson's syndrome) as an exemplar condition, with high clinicopathological correlations. Progressive supranuclear palsy causes a marked change in cortical neurophysiology in the presence of mild cortical atrophy and is associated with a decline in cognitive functions associated with the frontal lobe. Using parametric empirical Bayesian inversion of a conductance-based canonical microcircuit model of magnetoencephalography data, we show that the inclusion of regional synaptic density-as a subject-specific prior on laminar-specific neuronal populations-markedly increases model evidence. Specifically, model comparison suggests that a reduction in synaptic density in inferior frontal cortex affects superficial and granular layer glutamatergic excitation. This predicted individual differences in behaviour, demonstrating the link between synaptic loss, neurophysiology and cognitive deficits. The method we demonstrate is not restricted to progressive supranuclear palsy or the effects of synaptic loss: such pathology-enriched dynamic causal models can be used to assess the mechanisms of other neurological disorders, with diverse non-invasive measures of pathology, and is suitable to test the effects of experimental pharmacology.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/patologia , Teorema de Bayes , Disfunção Cognitiva/complicações , Atrofia/complicações
16.
Brain ; 146(8): 3221-3231, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883644

RESUMO

Frontotemporal dementia is clinically and neuropathologically heterogeneous, but neuroinflammation, atrophy and cognitive impairment occur in all of its principal syndromes. Across the clinical spectrum of frontotemporal dementia, we assess the predictive value of in vivo neuroimaging measures of microglial activation and grey-matter volume on the rate of future cognitive decline. We hypothesized that inflammation is detrimental to cognitive performance, in addition to the effect of atrophy. Thirty patients with a clinical diagnosis of frontotemporal dementia underwent a baseline multimodal imaging assessment, including [11C]PK11195 PET to index microglial activation and structural MRI to quantify grey-matter volume. Ten people had behavioural variant frontotemporal dementia, 10 had the semantic variant of primary progressive aphasia and 10 had the non-fluent agrammatic variant of primary progressive aphasia. Cognition was assessed at baseline and longitudinally with the revised Addenbrooke's Cognitive Examination, at an average of 7-month intervals (for an average of ∼2 years, up to ∼5 years). Regional [11C]PK11195 binding potential and grey-matter volume were determined, and these were averaged within four hypothesis-driven regions of interest: bilateral frontal and temporal lobes. Linear mixed-effect models were applied to the longitudinal cognitive test scores, with [11C]PK11195 binding potentials and grey-matter volumes as predictors of cognitive performance, with age, education and baseline cognitive performance as covariates. Faster cognitive decline was associated with reduced baseline grey-matter volume and increased microglial activation in frontal regions, bilaterally. In frontal regions, microglial activation and grey-matter volume were negatively correlated, but provided independent information, with inflammation the stronger predictor of the rate of cognitive decline. When clinical diagnosis was included as a factor in the models, a significant predictive effect was found for [11C]PK11195 BPND in the left frontal lobe (-0.70, P = 0.01), but not for grey-matter volumes (P > 0.05), suggesting that inflammation severity in this region relates to cognitive decline regardless of clinical variant. The main results were validated by two-step prediction frequentist and Bayesian estimation of correlations, showing significant associations between the estimated rate of cognitive change (slope) and baseline microglial activation in the frontal lobe. These findings support preclinical models in which neuroinflammation (by microglial activation) accelerates the neurodegenerative disease trajectory. We highlight the potential for immunomodulatory treatment strategies in frontotemporal dementia, in which measures of microglial activation may also improve stratification for clinical trials.


Assuntos
Afasia Primária Progressiva , Disfunção Cognitiva , Demência Frontotemporal , Doenças Neurodegenerativas , Doença de Pick , Humanos , Demência Frontotemporal/metabolismo , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/patologia , Microglia/metabolismo , Teorema de Bayes , Lobo Frontal/patologia , Doença de Pick/patologia , Disfunção Cognitiva/metabolismo , Imageamento por Ressonância Magnética/métodos , Inflamação/patologia , Atrofia/patologia , Afasia Primária Progressiva/patologia
17.
Brain ; 146(5): 2120-2131, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36458975

RESUMO

While frontotemporal dementia has been considered a neurodegenerative disease that starts in mid-life or later, it is now clearly established that cortical and subcortical volume loss is observed more than a decade prior to symptom onset and progresses with ageing. To test the hypothesis that genetic mutations causing frontotemporal dementia have neurodevelopmental consequences, we examined the youngest adults in the GENFI cohort of pre-symptomatic frontotemporal dementia mutation carriers who are between 19 and 30 years of age. Structural brain differences and improved performance on some cognitive tests were found for MAPT and GRN mutation carriers relative to familial non-carriers, while smaller volumes were observed in C9orf72 repeat expansion carriers at a mean age of 26 years. The detection of such early differences supports potential advantageous neurodevelopmental consequences of some frontotemporal dementia-causing genetic mutations. These results have implications for the design of therapeutic interventions for frontotemporal dementia. Future studies at younger ages are needed to identify specific early pathophysiologic or compensatory processes that occur during the neurodevelopmental period.


Assuntos
Demência Frontotemporal , Doenças Neurodegenerativas , Doença de Pick , Humanos , Adulto Jovem , Adulto , Demência Frontotemporal/genética , Progranulinas/genética , Encéfalo , Mutação , Proteína C9orf72/genética , Proteínas tau/genética
18.
Brain ; 146(6): 2570-2583, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36975162

RESUMO

Human prion diseases are remarkable for long incubation times followed typically by rapid clinical decline. Seed amplification assays and neurodegeneration biofluid biomarkers are remarkably useful in the clinical phase, but their potential to predict clinical onset in healthy people remains unclear. This is relevant not only to the design of preventive strategies in those at-risk of prion diseases, but more broadly, because prion-like mechanisms are thought to underpin many neurodegenerative disorders. Here, we report the accrual of a longitudinal biofluid resource in patients, controls and healthy people at risk of prion diseases, to which ultrasensitive techniques such as real-time quaking-induced conversion (RT-QuIC) and single molecule array (Simoa) digital immunoassays were applied for preclinical biomarker discovery. We studied 648 CSF and plasma samples, including 16 people who had samples taken when healthy but later developed inherited prion disease (IPD) ('converters'; range from 9.9 prior to, and 7.4 years after onset). Symptomatic IPD CSF samples were screened by RT-QuIC assay variations, before testing the entire collection of at-risk samples using the most sensitive assay. Glial fibrillary acidic protein (GFAP), neurofilament light (NfL), tau and UCH-L1 levels were measured in plasma and CSF. Second generation (IQ-CSF) RT-QuIC proved 100% sensitive and specific for sporadic Creutzfeldt-Jakob disease (CJD), iatrogenic and familial CJD phenotypes, and subsequently detected seeding activity in four presymptomatic CSF samples from three E200K carriers; one converted in under 2 months while two remain asymptomatic after at least 3 years' follow-up. A bespoke HuPrP P102L RT-QuIC showed partial sensitivity for P102L disease. No compatible RT-QuIC assay was discovered for classical 6-OPRI, A117V and D178N, and these at-risk samples tested negative with bank vole RT-QuIC. Plasma GFAP and NfL, and CSF NfL levels emerged as proximity markers of neurodegeneration in the typically slow IPDs (e.g. P102L), with significant differences in mean values segregating healthy control from IPD carriers (within 2 years to onset) and symptomatic IPD cohorts; plasma GFAP appears to change before NfL, and before clinical conversion. In conclusion, we show distinct biomarker trajectories in fast and slow IPDs. Specifically, we identify several years of presymptomatic seeding positivity in E200K, a new proximity marker (plasma GFAP) and sequential neurodegenerative marker evolution (plasma GFAP followed by NfL) in slow IPDs. We suggest a new preclinical staging system featuring clinical, seeding and neurodegeneration aspects, for validation with larger prion at-risk cohorts, and with potential application to other neurodegenerative proteopathies.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Proteínas tau/metabolismo , Biomarcadores
19.
Brain ; 146(8): 3232-3242, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36975168

RESUMO

The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based end point selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), multiple system atrophy (MSA) and related disorders, to compare candidate clinical trial end points. In this multicentre UK study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and MRI assessments at baseline, 6 and 12 months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, PSP-subcortical (PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (PSP-frontal, PSP-speech and language and PSP-CBS subtypes), MSA-parkinsonism, MSA-cerebellar, CBS with and without evidence of Alzheimer's disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling and sample sizes for clinical trials of disease-modifying agents, according to group and assessment type. Two hundred forty-three people were recruited [117 PSP, 68 CBS, 42 MSA and 16 indeterminate; 138 (56.8%) male; age at recruitment 68.7 ± 8.61 years]. One hundred and fifty-nine completed the 6-month assessment (82 PSP, 27 CBS, 40 MSA and 10 indeterminate) and 153 completed the 12-month assessment (80 PSP, 29 CBS, 35 MSA and nine indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for 1-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease-specific. In conclusion, phenotypic variance within PSP, CBS and MSA is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial end points, from potential functional, cognitive, clinical or neuroimaging measures of disease progression.


Assuntos
Atrofia de Múltiplos Sistemas , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/tratamento farmacológico , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/patologia , Imageamento por Ressonância Magnética , Reino Unido
20.
Brain ; 146(1): 321-336, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35188955

RESUMO

Connections among brain regions allow pathological perturbations to spread from a single source region to multiple regions. Patterns of neurodegeneration in multiple diseases, including behavioural variant of frontotemporal dementia (bvFTD), resemble the large-scale functional systems, but how bvFTD-related atrophy patterns relate to structural network organization remains unknown. Here we investigate whether neurodegeneration patterns in sporadic and genetic bvFTD are conditioned by connectome architecture. Regional atrophy patterns were estimated in both genetic bvFTD (75 patients, 247 controls) and sporadic bvFTD (70 patients, 123 controls). First, we identified distributed atrophy patterns in bvFTD, mainly targeting areas associated with the limbic intrinsic network and insular cytoarchitectonic class. Regional atrophy was significantly correlated with atrophy of structurally- and functionally-connected neighbours, demonstrating that network structure shapes atrophy patterns. The anterior insula was identified as the predominant group epicentre of brain atrophy using data-driven and simulation-based methods, with some secondary regions in frontal ventromedial and antero-medial temporal areas. We found that FTD-related genes, namely C9orf72 and TARDBP, confer local transcriptomic vulnerability to the disease, modulating the propagation of pathology through the connectome. Collectively, our results demonstrate that atrophy patterns in sporadic and genetic bvFTD are jointly shaped by global connectome architecture and local transcriptomic vulnerability, providing an explanation as to how heterogenous pathological entities can lead to the same clinical syndrome.


Assuntos
Conectoma , Demência Frontotemporal , Doença de Pick , Humanos , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Transcriptoma , Encéfalo/patologia , Doença de Pick/patologia , Atrofia/patologia , Imageamento por Ressonância Magnética , Testes Neuropsicológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA