Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.109
Filtrar
Mais filtros

Coleção Fiocruz
Intervalo de ano de publicação
1.
Cell ; 185(21): 4008-4022.e14, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36150393

RESUMO

The continual evolution of SARS-CoV-2 and the emergence of variants that show resistance to vaccines and neutralizing antibodies threaten to prolong the COVID-19 pandemic. Selection and emergence of SARS-CoV-2 variants are driven in part by mutations within the viral spike protein and in particular the ACE2 receptor-binding domain (RBD), a primary target site for neutralizing antibodies. Here, we develop deep mutational learning (DML), a machine-learning-guided protein engineering technology, which is used to investigate a massive sequence space of combinatorial mutations, representing billions of RBD variants, by accurately predicting their impact on ACE2 binding and antibody escape. A highly diverse landscape of possible SARS-CoV-2 variants is identified that could emerge from a multitude of evolutionary trajectories. DML may be used for predictive profiling on current and prospective variants, including highly mutated variants such as Omicron, thus guiding the development of therapeutic antibody treatments and vaccines for COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Mutação , Pandemias , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
2.
Cell ; 155(1): 81-93, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24074862

RESUMO

The importance of maternal folate consumption for normal development is well established, yet the molecular mechanism linking folate metabolism to development remains poorly understood. The enzyme methionine synthase reductase (Mtrr) is necessary for utilization of methyl groups from the folate cycle. We found that a hypomorphic mutation of the mouse Mtrr gene results in intrauterine growth restriction, developmental delay, and congenital malformations, including neural tube, heart, and placental defects. Importantly, these defects were dependent upon the Mtrr genotypes of the maternal grandparents. Furthermore, we observed widespread epigenetic instability associated with altered gene expression in the placentas of wild-type grandprogeny of Mtrr-deficient maternal grandparents. Embryo transfer experiments revealed that Mtrr deficiency in mice lead to two distinct, separable phenotypes: adverse effects on their wild-type daughters' uterine environment, leading to growth defects in wild-type grandprogeny, and the appearance of congenital malformations independent of maternal environment that persist for five generations, likely through transgenerational epigenetic inheritance.


Assuntos
Anormalidades Congênitas/genética , Embrião de Mamíferos/metabolismo , Epigênese Genética , Ferredoxina-NADP Redutase/genética , Retardo do Crescimento Fetal/genética , Ácido Fólico/metabolismo , Animais , Cruzamentos Genéticos , Metilação de DNA , Feminino , Ferredoxina-NADP Redutase/metabolismo , Masculino , Camundongos , Mutação
3.
Nature ; 608(7922): 390-396, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922513

RESUMO

Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1-3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a ß-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates.


Assuntos
Antibacterianos , Bactérias , Membrana Celular , Depsipeptídeos , Viabilidade Microbiana , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/citologia , Bactérias/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Difosfatos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Lipídeos/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Pirrolidinas/química , Açúcares/química
4.
Nature ; 600(7888): 259-263, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34853468

RESUMO

Armoured dinosaurs are well known for their evolution of specialized tail weapons-paired tail spikes in stegosaurs and heavy tail clubs in advanced ankylosaurs1. Armoured dinosaurs from southern Gondwana are rare and enigmatic, but probably include the earliest branches of Ankylosauria2-4. Here we describe a mostly complete, semi-articulated skeleton of a small (approximately 2 m) armoured dinosaur from the late Cretaceous period of Magallanes in southernmost Chile, a region that is biogeographically related to West Antarctica5. Stegouros elengassen gen. et sp. nov. evolved a large tail weapon unlike any dinosaur: a flat, frond-like structure formed by seven pairs of laterally projecting osteoderms encasing the distal half of the tail. Stegouros shows ankylosaurian cranial characters, but a largely ancestral postcranial skeleton, with some stegosaur-like characters. Phylogenetic analyses placed Stegouros in Ankylosauria; specifically, it is related to Kunbarrasaurus from Australia6 and Antarctopelta from Antarctica7, forming a clade of Gondwanan ankylosaurs that split earliest from all other ankylosaurs. The large osteoderms and specialized tail vertebrae in Antarctopelta suggest that it had a tail weapon similar to Stegouros. We propose a new clade, the Parankylosauria, to include the first ancestor of Stegouros-but not Ankylosaurus-and all descendants of that ancestor.


Assuntos
Agressão , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Fósseis , Cauda/anatomia & histologia , Cauda/fisiologia , Animais , Regiões Antárticas , Chile , Comportamento Predatório , Esqueleto
5.
Proc Natl Acad Sci U S A ; 121(11): e2310044121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446857

RESUMO

We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 tesla arterial spin labeling (ASL) data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and already detectable with 50 perfusion-weighted images per subject, acquired in 5 min. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometric properties, macrovasculature, and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterizing hippocampal perfusion.


Assuntos
Artérias , Benchmarking , Perfusão , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética
6.
J Immunol ; 213(1): 7-13, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38775415

RESUMO

Lymphocyte activation gene 3 (LAG3) is an inhibitory receptor that plays a critical role in controlling T cell tolerance and autoimmunity and is a major immunotherapeutic target. LAG3 is expressed on the cell surface as a homodimer but the functional relevance of this is unknown. In this study, we show that the association between the TCR/CD3 complex and a murine LAG3 mutant that cannot dimerize is perturbed in CD8+ T cells. We also show that LAG3 dimerization is required for optimal inhibitory function in a B16-gp100 tumor model. Finally, we demonstrate that a therapeutic LAG3 Ab, C9B7W, which does not block LAG3 interaction with its cognate ligand MHC class II, disrupts LAG3 dimerization and its association with the TCR/CD3 complex. These studies highlight the functional importance of LAG3 dimerization and offer additional approaches to therapeutically target LAG3.


Assuntos
Antígenos CD , Linfócitos T CD8-Positivos , Proteína do Gene 3 de Ativação de Linfócitos , Multimerização Proteica , Animais , Camundongos , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos CD/genética , Linfócitos T CD8-Positivos/imunologia , Melanoma Experimental/imunologia , Camundongos Endogâmicos C57BL , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Complexo CD3/imunologia , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Ativação Linfocitária/imunologia , Ligação Proteica
7.
J Biol Chem ; 300(5): 107241, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556085

RESUMO

Lymphocyte activation gene 3 protein (LAG3) is an immune checkpoint receptor that is highly upregulated on exhausted T cells in the tumor microenvironment. LAG3 transmits inhibitory signals to T cells upon binding to MHC class II and other ligands, rendering T cells dysfunctional. Consequently, LAG3 is a major target for cancer immunotherapy with many anti-LAG3 monoclonal antibodies (mAbs) that block LAG3 inhibitory activity in clinical trials. In this review, we examine the molecular basis for LAG3 function in light of recently determined crystal and cryoEM structures of this inhibitory receptor. We review what is known about LAG3 interactions with MHC class II, its canonical ligand, and the newly discovered ligands FGL1 and the T cell receptor (TCR)-CD3 complex, including current controversies over the relative importance of these ligands. We then address the development and mechanisms of action of anti-LAG3 mAbs in clinical trials for cancer immunotherapy. We discuss new strategies to therapeutically target LAG3 using mAbs that not only block the LAG3-MHC class II interaction, but also LAG3 interactions with FGL1 or TCR-CD3, or that disrupt LAG3 dimerization. Finally, we assess the possibility of developing mAbs that enhance, rather than block, LAG3 inhibitory activity as treatments for autoimmune diseases.


Assuntos
Antígenos CD , Imunoterapia , Proteína do Gene 3 de Ativação de Linfócitos , Neoplasias , Animais , Humanos , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos CD/química , Imunoterapia/métodos , Proteína do Gene 3 de Ativação de Linfócitos/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/química
8.
Proc Natl Acad Sci U S A ; 119(18): e2113766119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35486691

RESUMO

The capacity of humoral B cell-mediated immunity to effectively respond to and protect against pathogenic infections is largely driven by the presence of a diverse repertoire of polyclonal antibodies in the serum, which are produced by plasma cells (PCs). Recent studies have started to reveal the balance between deterministic mechanisms and stochasticity of antibody repertoires on a genotypic level (i.e., clonal diversity, somatic hypermutation, and germline gene usage). However, it remains unclear if clonal selection and expansion of PCs follow any deterministic rules or are stochastic with regards to phenotypic antibody properties (i.e., antigen-binding, affinity, and epitope specificity). Here, we report on the in-depth genotypic and phenotypic characterization of clonally expanded PC antibody repertoires following protein immunization. We find that clonal expansion drives antigen specificity of the most expanded clones (top ∼10), whereas among the rest of the clonal repertoire antigen specificity is stochastic. Furthermore, we report both on a polyclonal repertoire and clonal lineage level that antibody-antigen binding affinity does not correlate with clonal expansion or somatic hypermutation. Last, we provide evidence for convergence toward targeting dominant epitopes despite clonal sequence diversity among the most expanded clones. Our results highlight the extent to which clonal expansion can be ascribed to antigen binding, affinity, and epitope specificity, and they have implications for the assessment of effective vaccines.


Assuntos
Antígenos , Plasmócitos , Animais , Anticorpos/genética , Afinidade de Anticorpos , Epitopos/genética , Camundongos
9.
Proc Natl Acad Sci U S A ; 119(11): e2112008119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263223

RESUMO

SignificanceHepatitis C virus chronically infects approximately 1% of the world's population, making an effective vaccine for hepatitis C virus a major unmet public health need. The membrane-associated E1E2 envelope glycoprotein has been used in clinical studies as a vaccine candidate. However, limited neutralization breadth and difficulty in producing large amounts of homogeneous membrane-associated E1E2 have hampered efforts to develop an E1E2-based vaccine. Our previous work described the design and biochemical validation of a native-like soluble secreted form of E1E2 (sE1E2). Here, we describe the immunogenic characterization of the sE1E2 complex. sE1E2 elicited broadly neutralizing antibodies in immunized mice, with increased neutralization breadth relative to the membrane-associated E1E2, thereby validating this platform as a promising model system for vaccine development.


Assuntos
Anticorpos Amplamente Neutralizantes , Anticorpos Anti-Hepatite C , Hepatite C , Imunogenicidade da Vacina , Proteínas do Envelope Viral , Vacinas contra Hepatite Viral , Animais , Anticorpos Amplamente Neutralizantes/biossíntese , Anticorpos Amplamente Neutralizantes/sangue , Hepatite C/prevenção & controle , Anticorpos Anti-Hepatite C/biossíntese , Anticorpos Anti-Hepatite C/sangue , Camundongos , Multimerização Proteica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/imunologia
10.
J Biol Chem ; 299(4): 103035, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806685

RESUMO

T cells play a crucial role in combatting SARS-CoV-2 and forming long-term memory responses to this coronavirus. The emergence of SARS-CoV-2 variants that can evade T cell immunity has raised concerns about vaccine efficacy and the risk of reinfection. Some SARS-CoV-2 T cell epitopes elicit clonally restricted CD8+ T cell responses characterized by T cell receptors (TCRs) that lack structural diversity. Mutations in such epitopes can lead to loss of recognition by most T cells specific for that epitope, facilitating viral escape. Here, we studied an HLA-A2-restricted spike protein epitope (RLQ) that elicits CD8+ T cell responses in COVID-19 convalescent patients characterized by highly diverse TCRs. We previously reported the structure of an RLQ-specific TCR (RLQ3) with greatly reduced recognition of the most common natural variant of the RLQ epitope (T1006I). Opposite to RLQ3, TCR RLQ7 recognizes T1006I with even higher functional avidity than the WT epitope. To explain the ability of RLQ7, but not RLQ3, to tolerate the T1006I mutation, we determined structures of RLQ7 bound to RLQ-HLA-A2 and T1006I-HLA-A2. These complexes show that there are multiple structural solutions to recognizing RLQ and thereby generating a clonally diverse T cell response to this epitope that assures protection against viral escape and T cell clonal loss.


Assuntos
COVID-19 , Receptores de Antígenos de Linfócitos T , SARS-CoV-2 , Humanos , Linfócitos T CD8-Positivos , COVID-19/imunologia , Epitopos de Linfócito T , Antígeno HLA-A2 , Receptores de Antígenos de Linfócitos T/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
11.
J Am Chem Soc ; 146(7): 4421-4432, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334076

RESUMO

Lipids adhere to membrane proteins to stimulate or suppress molecular and ionic transport and signal transduction. Yet, the molecular details of lipid-protein interaction and their functional impact are poorly characterized. Here we combine NMR, coarse-grained molecular dynamics (CGMD), and functional assays to reveal classic cooperativity in the binding and subsequent activation of a bacterial inward rectifier potassium (Kir) channel by phosphatidylglycerol (PG), a common component of many membranes. Past studies of lipid activation of Kir channels focused primarily on phosphatidylinositol bisphosphate, a relatively rare signaling lipid that is tightly regulated in space and time. We use solid-state NMR to quantify the binding of unmodified 13C-PG to the K+ channel KirBac1.1 in liposomes. This specific lipid-protein interaction has a dissociation constant (Kd) of ∼7 mol percentage PG (ΧPG) with positive cooperativity (n = 3.8) and approaches saturation near 20% ΧPG. Liposomal flux assays show that K+ flux also increases with PG in a cooperative manner with an EC50 of ∼20% ΧPG, within the physiological range. Further quantitative fitting of these data reveals that PG acts as a partial (80%) agonist with fivefold K+ flux amplification. Comparisons of NMR chemical shift perturbation and CGMD simulations at different ΧPG confirm the direct interaction of PG with key residues, several of which would not be accessible to lipid headgroups in the closed state of the channel. Allosteric regulation by a common lipid is directly relevant to the activation mechanisms of several human ion channels. This study highlights the role of concentration-dependent lipid-protein interactions and tightly controlled protein allostery in the activation and regulation of ion channels.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Humanos , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Lipossomos , Proteínas de Membrana/metabolismo , Lipídeos , Espectroscopia de Ressonância Magnética
12.
J Neurochem ; 168(4): 397-413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37864501

RESUMO

The basal forebrain cholinergic neurons provide acetylcholine to the cortex via large projections. Recent molecular imaging work in humans indicates that the cortical cholinergic innervation is not uniformly distributed, but rather may disproportionately innervate cortical areas relevant to supervisory attention. In this study, we therefore reexamined the spatial relationship between acetylcholinergic modulation and attention in the human cortex using meta-analytic strategies targeting both pharmacological and non-pharmacological neuroimaging studies. We found that pharmaco-modulation of acetylcholine evoked both increased activity in the anterior cingulate and decreased activity in the opercular and insular cortex. In large independent meta-analyses of non-pharmacological neuroimaging research, we demonstrate that during attentional engagement these cortical areas exhibit (1) task-related co-activation with the basal forebrain, (2) task-related co-activation with one another, and (3) spatial overlap with dense cholinergic innervations originating from the basal forebrain, as estimated by multimodal positron emission tomography and magnetic resonance imaging. Finally, we provide meta-analytic evidence that pharmaco-modulation of acetylcholine also induces a speeding of responses to targets with no apparent tradeoff in accuracy. In sum, we demonstrate in humans that acetylcholinergic modulation of midcingulo-insular hubs of the ventral attention/salience network via basal forebrain afferents may coordinate selection of task relevant information, thereby facilitating cognition and behavior.


Assuntos
Acetilcolina , Atenção , Humanos , Cognição/fisiologia , Neuroimagem , Colinérgicos/farmacologia
13.
Radiology ; 311(1): e231934, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652031

RESUMO

Cryptogenic stroke refers to a stroke of undetermined etiology. It accounts for approximately one-fifth of ischemic strokes and has a higher prevalence in younger patients. Embolic stroke of undetermined source (ESUS) refers to a subgroup of patients with nonlacunar cryptogenic strokes in whom embolism is the suspected stroke mechanism. Under the classifications of cryptogenic stroke or ESUS, there is wide heterogeneity in possible stroke mechanisms. In the absence of a confirmed stroke etiology, there is no established treatment for secondary prevention of stroke in patients experiencing cryptogenic stroke or ESUS, despite several clinical trials, leaving physicians with a clinical dilemma. Both conventional and advanced MRI techniques are available in clinical practice to identify differentiating features and stroke patterns and to determine or infer the underlying etiologic cause, such as atherosclerotic plaques and cardiogenic or paradoxical embolism due to occult pelvic venous thrombi. The aim of this review is to highlight the diagnostic utility of various MRI techniques in patients with cryptogenic stroke or ESUS. Future trends in technological advancement for promoting the adoption of MRI in such a special clinical application are also discussed.


Assuntos
AVC Embólico , Imageamento por Ressonância Magnética , Humanos , AVC Embólico/diagnóstico por imagem , AVC Embólico/etiologia , Imageamento por Ressonância Magnética/métodos , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/etiologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia
14.
Semin Thromb Hemost ; 50(2): 314-319, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38086408

RESUMO

This manuscript represents a republication of a manuscript originally published in STH in 1995. This republication is to help celebrate 50 years of publishing for STH. The original abstract follows.A new in vitro system for the detection of platelet dysfunction, PFA-100®, has been developed. It provides a quantitative measure of platelet function in anticoagulated whole blood. The system comprises a microprocessor-controlled instrument and a disposable test cartridge containing a biologically active membrane. The instrument aspirates a blood sample under constant vacuum from the sample reservoir through a capillary and a microscopic aperture cut into the membrane. The membrane is coated with collagen and epinephrine or adenosine 5'-diphosphate. The presence of these biochemical stimuli, and the high shear rates generated under the standardized flow conditions, result in platelet attachment, activation, and aggregation, slowly building a stable platelet plug at the aperture. The time required to obtain full occlusion of the aperture is reported as the "closure time." We have found that impairment of von Willebrand factor, or inhibition of platelet receptors glycoprotein Ib or IIb/IIIa with monoclonal antibodies or peptides, resulted in abnormal closure times. An antifibrinogen antibody, in contrast, failed to show any effect. The test appears to be sensitive to platelet adherence and aggregation abnormalities. The PFA-100® system has potential applications in routine evaluation of platelet function in the clinical setting because of its accuracy, case of operation, and rapid turnaround of results.


Assuntos
Transtornos Plaquetários , Testes de Função Plaquetária , Humanos , Testes de Função Plaquetária/métodos , Plaquetas/fisiologia , Hemostasia , Testes de Coagulação Sanguínea , Agregação Plaquetária
15.
Phys Rev Lett ; 132(2): 026003, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38277584

RESUMO

The hexatic phase is an intermediate stage in the melting process of a 2D crystal due to topological defects. Recently, this exotic phase was experimentally identified in the vortex lattice of 2D weakly disordered superconducting MoGe by scanning tunneling microscopic measurements. Here, we study this vortex state by the Nernst effect, which is an effective and sensitive tool to detect vortex motion, especially in the superconducting fluctuation regime. We find a surprising Nernst sign reversal at the melting transition of the hexatic phase. We propose that they are a consequence of vortex dislocations in the hexatic state which diffuse preferably from the cold to hot.

16.
J Clin Psychopharmacol ; 44(2): 117-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38230861

RESUMO

BACKGROUND: As clinical practices with lithium salts for patients diagnosed with bipolar disorder (BD) are poorly documented in Asia, we studied the prevalence and clinical correlates of lithium use there to support international comparisons. METHODS: We conducted a cross-sectional study of use and dosing of lithium salts for BD patients across 13 Asian sites and evaluated bivariate relationships of lithium treatment with clinical correlates followed by multivariate logistic regression modeling. RESULTS: In a total of 2139 BD participants (52.3% women) of mean age 42.4 years, lithium salts were prescribed in 27.3% of cases overall, varying among regions from 3.20% to 59.5%. Associated with lithium treatment were male sex, presence of euthymia or mild depression, and a history of seasonal mood change. Other mood stabilizers usually were given with lithium, often at relatively high doses. Lithium use was associated with newly emerging and dose-dependent risk of tremors as well as risk of hypothyroidism. We found no significant differences in rates of clinical remission or of suicidal behavior if treatment included lithium or not. CONCLUSIONS: Study findings clarify current prevalence, dosing, and clinical correlates of lithium treatment for BD in Asia. This information should support clinical decision-making regarding treatment of BD patients and international comparisons of therapeutic practices.


Assuntos
Transtorno Bipolar , Humanos , Masculino , Feminino , Adulto , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/epidemiologia , Transtorno Bipolar/induzido quimicamente , Lítio/uso terapêutico , Estudos Transversais , Farmacoepidemiologia , Sais/uso terapêutico , Antimaníacos/uso terapêutico , Compostos de Lítio/uso terapêutico
17.
Langmuir ; 40(17): 8971-8980, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629792

RESUMO

Cells require oligonucleotides and polypeptides with specific, homochiral sequences to perform essential functions, but it is unclear how such oligomers were selected from random sequences at the origin of life. Cells were probably preceded by simple compartments such as fatty acid vesicles, and oligomers that increased the stability, growth, or division of vesicles could have thereby increased in frequency. We therefore tested whether prebiotic peptides alter the stability or growth of vesicles composed of a prebiotic fatty acid. We find that three of 15 dipeptides tested reduce salt-induced flocculation of vesicles. All three contain leucine, and increasing their length increases the efficacy. Also, leucine-leucine but not alanine-alanine increases the size of vesicles grown by multiple additions of micelles. In a molecular simulation, leucine-leucine docks to the membrane, with the side chains inserted into the hydrophobic core of the bilayer, while alanine-alanine fails to dock. Finally, the heterochiral forms of leucine-leucine, at a high concentration, rapidly shrink the vesicles and make them leakier and less stable to high pH than the homochiral forms do. Thus, prebiotic peptide-membrane interactions influence the flocculation, growth, size, leakiness, and pH stability of prebiotic vesicles, with differential effects due to sequence, length, and chirality. These differences could lead to a population of vesicles enriched for peptides with beneficial sequence and chirality, beginning selection for the functional oligomers that underpin life.


Assuntos
Peptídeos , Peptídeos/química , Alanina/química , Estereoisomerismo , Células Artificiais/química , Leucina/química , Origem da Vida , Dipeptídeos/química
18.
Biomacromolecules ; 25(5): 3055-3062, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38693874

RESUMO

Polymersomes, nanosized polymeric vesicles, have attracted significant interest in the areas of artificial cells and nanomedicine. Given their size, their visualization via confocal microscopy techniques is often achieved through the physical incorporation of fluorescent dyes, which however present challenges due to potential leaching. A promising alternative is the incorporation of molecules with aggregation-induced emission (AIE) behavior that are capable of fluorescing exclusively in their assembled state. Here, we report on the use of AIE polymersomes as artificial organelles, which are capable of undertaking enzymatic reactions in vitro. The ability of our polymersome-based artificial organelles to provide additional functionality to living cells was evaluated by encapsulating catalytic enzymes such as a combination of glucose oxidase/horseradish peroxidase (GOx/HRP) or ß-galactosidase (ß-gal). Via the additional incorporation of a pyridinium functionality, not only the cellular uptake is improved at low concentrations but also our platform's potential to specifically target mitochondria expands.


Assuntos
Glucose Oxidase , Peroxidase do Rábano Silvestre , beta-Galactosidase , Glucose Oxidase/química , Humanos , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Organelas/metabolismo , Corantes Fluorescentes/química , Polímeros/química , Fluorescência , Células HeLa , Mitocôndrias/metabolismo
19.
Fish Shellfish Immunol ; 144: 109250, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035950

RESUMO

The scavenger endothelial cells (SECs) of vertebrates are an important class of endocytic cells responsible for clearance of foreign and physiological waste macromolecules, partitioning in the immune system, functioning as a cellular powerplant by producing high energy metabolites like lactate and acetate. All animal phyla possess SECs, but the tissue localization of SECs has only been investigated in a limited number of species. By using a specific ligand for scavenger receptors (formalin treated bovine serum albumin), the study revealed that in all tetrapod species (amphibia, reptiles, birds and mammals) the SECs were found lining the sinusoids of the liver. No SECs were found in the liver of any of the bony fishes (Osteichthyes) investigated. Interestingly, we found the SECs not only to be located in the heart of marine species but also in some freshwater species such as Lota lota, Percichthys trucha and Perca fluviatilis. In some fish species, the SECs were found both in the heart and/or kidney in a number of marine and freshwater fishes, whereas in some marine, diadromous and freshwater fishes the SECs were confined only to the kidney tissue. However, from these results it can be suggested that there is neither a clear phylogenetic trend when it came to anatomical localization of SECs nor any pattern in terms of habitat (salinity preferences).


Assuntos
Células Endoteliais , Vertebrados , Animais , Células Endoteliais/metabolismo , Filogenia , Peixes , Fígado/metabolismo , Mamíferos
20.
J Immunol ; 209(8): 1586-1594, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36104110

RESUMO

Lymphocyte activation gene 3 protein (LAG3; CD223) is an inhibitory receptor that is highly upregulated on exhausted T cells in tumors and chronic viral infection. Consequently, LAG3 is now a major immunotherapeutic target for the treatment of cancer, and many mAbs against human (h) LAG3 (hLAG3) have been generated to block its inhibitory activity. However, little or no information is available on the epitopes they recognize. We selected a panel of seven therapeutic mAbs from the patent literature for detailed characterization. These mAbs were expressed as Fab or single-chain variable fragments and shown to bind hLAG3 with nanomolar affinities, as measured by biolayer interferometry. Using competitive binding assays, we found that the seven mAbs recognize four distinct epitopes on hLAG3. To localize the epitopes, we carried out epitope mapping using chimeras between hLAG3 and mouse LAG3. All seven mAbs are directed against the first Ig-like domain (D1) of hLAG3, despite their different origins. Three mAbs almost exclusively target a unique 30-residue loop of D1 that forms at least part of the putative binding site for MHC class II, whereas four mainly recognize D1 determinants outside this loop. However, because all the mAbs block binding of hLAG3 to MHC class II, each of the epitopes they recognize must at least partially overlap the MHC class II binding site.


Assuntos
Antígenos CD/imunologia , Anticorpos de Cadeia Única , Animais , Anticorpos Monoclonais , Mapeamento de Epitopos , Epitopos , Humanos , Camundongos , Anticorpos de Cadeia Única/metabolismo , Linfócitos T , Proteína do Gene 3 de Ativação de Linfócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA