Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 66(2): e0206721, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34930034

RESUMO

Infections caused by ceftolozane-tazobactam and ceftazidime-avibactam-resistant P. aeruginosa infections are an emerging concern. We aimed to analyze the underlying ceftolozane-tazobactam and ceftazidime-avibactam resistance mechanisms in all multidrug-resistant or extensively drug-resistant (MDR/XDR) P. aeruginosa isolates recovered during 1 year (2020) from patients with a documented P. aeruginosa infection. Fifteen isolates showing ceftolozane-tazobactam and ceftazidime-avibactam resistance were evaluated. Clinical conditions, previous positive cultures, and ß-lactams received in the previous month were reviewed for each patient. MICs were determined by broth microdilution. Multilocus sequence types (MLSTs) and resistance mechanisms were determined using short- and long-read whole-genome sequencing (WGS). The impact of Pseudomonas-derived cephalosporinases (PDCs) on ß-lactam resistance was demonstrated by cloning into an ampC-deficient PAO1 derivative (PAOΔC) and construction of 3D models. Genetic support of acquired ß-lactamases was determined in silico from high-quality hybrid assemblies. In most cases, the isolates were recovered after treatment with ceftolozane-tazobactam or ceftazidime-avibactam. Seven isolates from different sequence types (STs) owed their ß-lactam resistance to chromosomal mutations and all displayed specific substitutions in PDC: Phe121Leu and Gly222Ser, Pro154Leu, Ala201Thr, Gly214Arg, ΔGly203-Glu219, and Glu219Lys. In the other eight isolates, the ST175 clone was overrepresented (6 isolates) and associated with IMP-28 and IMP-13, whereas two ST1284 isolates produced VIM-2. The cloned PDCs conferred enhanced cephalosporin resistance. The 3D PDC models revealed rearrangements affecting residues involved in cephalosporin hydrolysis. Carbapenemases were chromosomal (VIM-2) or plasmid-borne (IMP-28, IMP-13) and associated with class-1 integrons located in Tn402-like transposition modules. Our findings highlighted that cephalosporin/ß-lactamase inhibitors are potential selectors of MDR/XDR P. aeruginosa strains producing PDC variants or metallo-ß-lactamases. Judicious use of these agents is encouraged.


Assuntos
Ceftazidima , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Proteínas de Bactérias , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Combinação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa , Tazobactam/farmacologia , Tazobactam/uso terapêutico , beta-Lactamases/genética , beta-Lactamases/uso terapêutico
2.
Nat Commun ; 15(1): 2717, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548737

RESUMO

Mycobacterium abscessus is an opportunistic, extensively drug-resistant non-tuberculous mycobacterium. Few genomic studies consider its diversity in persistent infections. Our aim was to characterize microevolution/reinfection events in persistent infections. Fifty-three sequential isolates from 14 patients were sequenced to determine SNV-based distances, assign resistance mutations and characterize plasmids. Genomic analysis revealed 12 persistent cases (0-13 differential SNVs), one reinfection (15,956 SNVs) and one very complex case (23 sequential isolates over 192 months), in which a first period of persistence (58 months) involving the same genotype 1 was followed by identification of a genotype 2 (76 SNVs) in 6 additional alternating isolates; additionally, ten transient genotypes (88-243 SNVs) were found. A macrolide resistance mutation was identified from the second isolate. Despite high diversity, the genotypes shared a common phylogenetic ancestor and some coexisted in the same specimens. Genomic analysis is required to access the true intra-patient complexity behind persistent infections involving M. abscessus.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Macrolídeos , Filogenia , Infecção Persistente , Reinfecção , Farmacorresistência Bacteriana/genética , Genômica , Testes de Sensibilidade Microbiana
3.
Microbiol Spectr ; 11(3): e0504122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212700

RESUMO

Mycobacterium abscessus (MABS) is the most pathogenic and drug-resistant rapidly growing mycobacteria. However, studies on MABS epidemiology, especially those focusing on subspecies level, are scarce. We aimed to determine MABS subspecies distribution and its correlation with phenotypic and genotypic antibiotic profiles. A retrospective multicenter study of 96 clinical MABS isolates in Madrid between 2016 to 2021 was conducted. Identification at the subspecies level and resistance to macrolides and aminoglycosides were performed by the GenoType NTM-DR assay. The MICs of 11 antimicrobials tested against MABS isolates were determined using the broth microdilution method (RAPMYCOI Sensititer titration plates). Clinical isolates included 50 (52.1%) MABS subsp. abscessus; 33 (34.4%) MABS subsp. massiliense; and 13 (13.5%) MABS subsp. bolletii. The lowest resistance rates corresponded to amikacin (2.1%), linezolid (6.3%), cefoxitin (7.3%), and imipenem (14.6%), and the highest to doxycycline (100.0%), ciprofloxacin (89.6%), moxifloxacin (82.3%), cotrimoxazole (82.3%), tobramycin (81.3%), and clarithromycin (50.0% at day 14 of incubation). Regarding tigecycline, although there are no susceptibility breakpoints, all strains but one showed MICs ≤ 1 µg/mL. Four isolates harbored mutations at positions 2058/9 of the rrl gene, one strain harbored a mutation at position 1408 of the rrl gene, and 18/50 harbored the T28C substitution at erm(41) gene. Agreement of the GenoType results with clarithromycin and amikacin susceptibility testing was 99.0% (95/96). The rate of MABS isolates showed an upward trend during the study period, being M. abscessus subsp. abscessus the most frequently isolated subspecies. Amikacin, cefoxitin, linezolid, and imipenem showed great in vitro activity. The GenoType NTM-DR assay provides a reliable and complementary tool to broth microdilution for drug resistance detection. IMPORTANCE Infections caused by Mycobacterium abscessus (MABS) are increasingly being reported worldwide. Identifying MABS subspecies and assessing their phenotypic resistance profiles are crucial for optimal management and better patient outcomes. M. abscessus subspecies differ in erm(41) gene functionality, which is a critical determinant of macrolide resistance. Additionally, resistance profiles of MABS and the subspecies distribution can vary geographically, highlighting the importance of understanding local epidemiology and resistance patterns. This study provides valuable insights into the epidemiology and resistance patterns of MABS and its subspecies in Madrid. Elevated resistance rates were observed for several recommended antimicrobials, emphasizing the need for cautious drug use. Furthermore, we assessed the GenoType NTM-DR assay, which examines principal mutations in macrolides and aminoglycosides resistance-related genes. We observed a high level of agreement between the GenoType NTM-DR assay and the microdilution method, indicating its usefulness as an initial tool for early initiation of appropriate therapy.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Antibacterianos/farmacologia , Claritromicina , Amicacina/farmacologia , Linezolida , Cefoxitina , Espanha/epidemiologia , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Macrolídeos , Farmacorresistência Bacteriana/genética , Imipenem , Aminoglicosídeos , Testes de Sensibilidade Microbiana
4.
Children (Basel) ; 9(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35626842

RESUMO

Background: SARS-CoV-2 was a global pandemic. Children develop a mild disease and may have a different rate of seroconversion compared to adults. The objective was to determine the number of seronegative patients in a pediatric cohort. We also reviewed the clinical−epidemiological features associated with seroconversion. Methods: A multicenter prospective observational study during September−November 2020, of COVID-19, confirmed by reverse transcription-polymerase chain reaction. Data were obtained 4−8 weeks after diagnosis. Blood samples were collected to investigate the humoral response, using three different serological methods. Results: A total of 111 patients were included (98 symptomatic), 8 were admitted to hospital, none required an Intensive Care Unit visit. Median age: 88 months (IQR: 24−149). Median time between diagnosis and serological test: 37 days (IQR: 34−44). A total of 19 patients were non-seroconverters when using three serological techniques (17.1%; 95% CI: 10.6−25.4); most were aged 2−10 years (35%, p < 0.05). Univariate analysis yielded a lower rate of seroconversion when COVID-19 confirmation was not present amongst household contacts (51.7%; p < 0.05). Conclusions: There was a high proportion of non-seroconverters. This is more commonly encountered in childhood than in adults. Most seronegative patients were in the group aged 2−10 years, and when COVID-19 was not documented in household contacts. Most developed a mild disease. Frequently, children were not the index case within the family.

5.
Microbiol Res ; 264: 127145, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35973364

RESUMO

BACKGROUND: Data regarding humoral and cellular response against SARS-CoV-2 in children are scarce. We analysed seroconversion rate, decrease of anti-RBD IgG antibodies over time and T-cell response in paediatric patients who suffered COVID-19. METHODS: Longitudinal study of paediatric patients COVID-19 diagnosed by positive molecular assay in nasopharyngeal swabs. Blood samples were drawn 1-2 months and 6-7 months after acute infection. Anti-RBD IgG were determined using the Alinity® SARS-CoV-2 IgG II Quant assay (Abbott). Cellular immune response was analysed by T-SPOT® SARS-CoV-2 assay kit (Oxford Immunotec Ltd.). RESULTS: 27/39 (69,2%) patients seroconverted. Despite a significant decrease in antibody levels over time (p < 0,01), no children seroreverted between first and second visits. Only 6/16 (37,2%) children under 6 years-old were seropositive compared to 21/23 (91,3%) over 6 years-old (p < 0,01). Highest antibody levels were found in seropositive younger children (p = 0,036). Thirteen (33,3%) children showed T-cell response. Among participants showing humoral response, no cellular response was detected in 14 (51,9%). CONCLUSIONS: Anti-RBD IgG antibodies persistence at 6-7-months after SARS-CoV-2 infection was observed. A different IgG response was found depending on age. As measured by T-SPOT, most patients did not display cellular response 6-7 months after infection.


Assuntos
COVID-19 , Anticorpos Antivirais , Criança , Pré-Escolar , Humanos , Imunoglobulina G , Estudos Longitudinais , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA