Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298547

RESUMO

Chronic lymphocytic leukaemia (CLL) is characterised by the expansion of a neoplastic mature B cell clone. CLL clinical outcome is very heterogeneous, with some subjects never requiring therapy and some showing an aggressive disease. Genetic and epigenetic alterations and pro-inflammatory microenvironment influence CLL progression and prognosis. The involvement of immune-mediated mechanisms in CLL control needs to be investigated. We analyse the activation profile of innate and adaptive cytotoxic immune effectors in a cohort of 26 CLL patients with stable disease, as key elements for immune-mediated control of cancer progression. We observed an increase in CD54 expression and interferon (IFN)-γ production by cytotoxic T cells (CTL). CTL ability to recognise tumour-targets depends on human leukocyte antigens (HLA)-class I expression. We observed a decreased expression of HLA-A and HLA-BC on B cells of CLL subjects, associated with a significant reduction in intracellular calnexin that is relevant for HLA surface expression. Natural killer (NK) cells and CTL from CLL subjects show an increased expression of the activating receptor KIR2DS2 and a reduction of 3DL1 and NKG2A inhibiting molecules. Therefore, an activation profile characterises CTL and NK cells of CLL subjects with stable disease. This profile is conceivable with the functional involvement of cytotoxic effectors in CLL control.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Humanos , Linfócitos T Citotóxicos , Células Matadoras Naturais , Linfócitos B , Antígenos de Histocompatibilidade Classe I , Microambiente Tumoral
2.
Eur J Haematol ; 109(4): 398-405, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35775392

RESUMO

BACKGROUND: Emergence of dysplastic haematopoietic precursor/s, cytopenia and variable leukaemia risk characterise myelodysplastic syndromes (MDS). Impaired immune-regulation, preferentially affecting cytotoxic T cells (CTL), has been largely observed in MDS. Recently, we described the TR3-56 T cell subset, characterised by the co-expression of CD3 and CD56, as a novel immune-regulatory population, able to modulate cytotoxic functions. Here, we address the involvement of TR3-56 cells in MDS pathogenesis/progression. OBJECTIVES: To analyse the relationship between TR3-56 and CTL activation/expansion in bone marrow (BM) of very-low/low-risk MDS subjects. METHODS: Peripheral blood and BM specimens, obtained at disease onset in a cohort of 58 subjects, were analysed by immune-fluorescence and flow cytometry, to preserve the complexity of the biological sample. RESULTS: We observed that a trend-increase of BM TR3-56 in high/very-high MDS stage, as compared with very-low/low group, associates with a decreased activation of BM resident CTL; significant correlation of TR3-56 with BM blasts has been also revealed. In addition, in very-low/low-risk subjects the TR3-56 amount in BM inversely correlates with the presence of activated BM CTL showing a skewed Vß T-cell repertoire. CONCLUSIONS: These data add TR3-56 to the immune-regulatory network involved in MDS pathogenesis/progression. Better knowledge of the immune-mediated processes associated with the disease might improve MDS clinical management.


Assuntos
Medula Óssea , Síndromes Mielodisplásicas , Células da Medula Óssea , Humanos , Síndromes Mielodisplásicas/etiologia , Subpopulações de Linfócitos T , Linfócitos T Citotóxicos , Linfócitos T Reguladores
4.
Biochim Biophys Acta ; 1843(2): 265-74, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24184207

RESUMO

Reactive oxygen species (ROS) behave as second messengers in signal transduction for a series of receptor/ligand interactions. A major regulatory role is played by hydrogen peroxide (H2O2), more stable and able to freely diffuse through cell membranes. Copper-zinc superoxide dismutase (CuZn-SOD)-1 is a cytosolic enzyme involved in scavenging oxygen radicals to H2O2 and molecular oxygen, thus representing a major cytosolic source of peroxides. Previous studies suggested that superoxide anion and H2O2 generation are involved in T cell receptor (TCR)-dependent signaling. Here, we describe that antigen-dependent activation of human T lymphocytes significantly increased extracellular SOD-1 levels in lymphocyte cultures. This effect was accompanied by the synthesis of SOD-1-specific mRNA and by the induction of microvesicle SOD-1 secretion. It is of note that SOD-1 increased its concentration specifically in T cell population, while no significant changes were observed in the "non-T" cell counterpart. Moreover, confocal microscopy showed that antigen-dependent activation was able to modify SOD-1 intracellular localization in T cells. Indeed, was observed a clear SOD-1 recruitment by TCR clusters. The ROS scavenger N-acetylcysteine (NAC) inhibited this phenomenon. Further studies are needed to define whether SOD-1-dependent superoxide/peroxide balance is relevant for regulation of T cell activation, as well as in the functional cross talk between immune effectors.


Assuntos
Espaço Intracelular/enzimologia , Ativação Linfocitária , Superóxido Dismutase/biossíntese , Superóxido Dismutase/metabolismo , Linfócitos T/enzimologia , Linfócitos T/imunologia , Acetilcisteína/farmacologia , Brefeldina A/farmacologia , Complexo CD3/metabolismo , Agregação Celular/efeitos dos fármacos , Análise por Conglomerados , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Indução Enzimática/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Superóxido Dismutase-1 , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos
6.
BMC Microbiol ; 14: 228, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25170542

RESUMO

BACKGROUND: Helicobacter pylori is the first bacterium formally recognized as a carcinogen and is one of the most successful human pathogens, as over half of the world's population is colonized by the bacterium. H. pylori-induced gastroduodenal disease depends on the inflammatory response of the host and on the production of specific bacterial virulence factors. The study of Helicobacter pylori pathogenic action would greatly benefit by easy-to-use models of infection. RESULTS: In the present study, we examined the effectiveness of the larvae of the wax moth Galleria mellonella as a new model for H. pylori infection. G. mellonella larvae were inoculated with bacterial suspensions or broth culture filtrates from either different wild-type H. pylori strains or their mutants defective in specific virulence determinants, such as VacA, CagA, CagE, the whole pathogenicity island (PAI) cag, urease, and gamma-glutamyl transpeptidase (GGT). We also tested purified VacA cytotoxin. Survival curves were plotted using the Kaplan-Meier method and LD50 lethal doses were calculated. Viable bacteria in the hemocoel were counted at different time points post-infection, while apoptosis in larval hemocytes was evaluated by annexin V staining. We found that wild-type and mutant H. pylori strains were able to survive and replicate in G. mellonella larvae which underwent death rapidly after infection. H. pylori mutant strains defective in either VacA, or CagA, or CagE, or cag PAI, or urease, but not GGT-defective mutants, were less virulent than the respective parental strain. Broth culture filtrates from wild-type strains G27 and 60190 and their mutants replicated the effects observed using their respective bacterial suspension. Also, purified VacA cytotoxin was able to kill the larvae. The killing of larvae always correlated with the induction of apoptosis in hemocytes. CONCLUSIONS: G. mellonella larvae are susceptible to H. pylori infection and may represent an easy to use in vivo model to identify virulence factors and pathogenic mechanisms of H. pylori. The experimental model described can be useful to screen a large number of clinical H. pylori strain and to correlate virulence of H. pylori strains with patients' disease status.


Assuntos
Modelos Animais de Doenças , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/crescimento & desenvolvimento , Helicobacter pylori/patogenicidade , Lepidópteros/microbiologia , Lepidópteros/fisiologia , Animais , Proteínas de Bactérias/genética , Deleção de Genes , Helicobacter pylori/genética , Larva/microbiologia , Larva/fisiologia , Análise de Sobrevida , Fatores de Virulência/genética
7.
Eur J Haematol ; 91(3): 265-269, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23734938

RESUMO

Myelodysplastic syndromes (MDS) are clonal disorders characterized by ineffective hematopoiesis and possible evolution to acute leukemia. Occurrence of stem cell defects and of immune-mediated mechanisms was evidenced as relevant for pathophysiology of MDS. Here, we described one case of MDS patient carrying CD14(+) CD56(+) monocytes in bone marrow (BM), in the presence of a defective human leukocyte antigen (HLA)-E expression on peripheral blood (PB) cells and of natural killer (NK) cell expansion in PB and BM. The defective HLA-E expression and the NK expansion are proposed to be relevant for the pathogenesis of myelodysplasia in those patients showing CD14(+) CD56(+) monocytes in BM.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Síndromes Mielodisplásicas/imunologia , Síndromes Mielodisplásicas/metabolismo , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Antígeno CD56/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunofenotipagem , Células Matadoras Naturais/citologia , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Síndromes Mielodisplásicas/genética , Antígenos HLA-E
8.
Cells ; 12(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132162

RESUMO

The interplay between immune activation and immune regulation is a fundamental aspect of the functional harmony of the immune system. This delicate balance is essential to triggering correct and effective immune responses against pathogens while preventing excessive inflammation and the immunopathogenic mechanisms of autoimmunity. The knowledge of all the mechanisms involved in immune regulation is not yet definitive, and, probably, the overall picture is much broader than what has been described in the scientific literature so far. Given the plasticity of the immune system and the diversity of organisms, it is highly probable that numerous other cells and molecules are still to be ascribed to the immune regulation process. Here, we report a general overview of how immune activation and regulation interact, based on the involvement of molecules and cells specifically dedicated to these processes. In addition, we discuss the role of TR3-56 lymphocytes as a new cellular candidate in the immune regulation landscape.


Assuntos
Autoimunidade , Imunidade , Humanos , Linfócitos T Reguladores , Inflamação
9.
Antioxidants (Basel) ; 12(9)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37760050

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a progressive motor neurodegenerative disease. Cell damage in ALS is the result of many different, largely unknown, pathogenetic mechanisms. Astrocytes and microglial cells play a critical role also for their ability to enhance a deranged inflammatory response. Excitotoxicity, due to excessive glutamate levels and increased intracellular Ca2+ concentration, has also been proposed to play a key role in ALS pathogenesis/progression. Reactive Oxygen Species (ROS) behave as key second messengers for multiple receptor/ligand interactions. ROS-dependent regulatory networks are usually mediated by peroxides. Superoxide Dismutase 1 (SOD1) physiologically mediates intracellular peroxide generation. About 10% of ALS subjects show a familial disease associated with different gain-of-function SOD1 mutations. The occurrence of sporadic ALS, not clearly associated with SOD1 defects, has been also described. SOD1-dependent pathways have been involved in neuron functional network as well as in immune-response regulation. Both, neuron depolarization and antigen-dependent T-cell activation mediate SOD1 exocytosis, inducing increased interaction of the enzyme with a complex molecular network involved in the regulation of neuron functional activity and immune response. Here, alteration of SOD1-dependent pathways mediating increased intracellular Ca2+ levels, altered mitochondria functions and defective inflammatory process regulation have been proposed to be relevant for ALS pathogenesis/progression.

10.
J Clin Med ; 12(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36902830

RESUMO

OBJECTIVE: To report for the first time an Italian epidemiological analysis of the prevalence of multiple sclerosis (MS) in patients with endometriosis (EMS), through the study of the endometriosis population of our referral center; to analyze the clinical profile and perform a laboratory analysis to examine the immune profile and the possible correlation to other autoimmune diseases of the enrolled patients. METHODS: We evaluated 1652 women registered with EMS in the University of Naples Federico II and retrospectively searched patients with a co-diagnosis of MS. Clinical features of both conditions were recorded. Serum autoantibody and immune profiles were analyzed. RESULTS: 9 out of 1652 patients presented a co-diagnosis of EMS and MS (9/1652 = 0.005%). Clinically, EMS and MS presented in mild forms. Hashimoto's thyroiditis was found in two patients (2/9). Even if not statistically significant, a trend of variation in CD4- CD8 T lymphocytes and of B cells were found. CONCLUSION: Our findings suggest an increased risk of MS in women with EMS. However, large-scale prospective studies are needed.

11.
Vet Sci ; 9(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35878343

RESUMO

Myxomatous mitral valve disease (MMVD) is a very frequently acquired cardiac disease in dog breeds and is responsible for congestive heart failure (CHF). The involvement of the immune system and pro-inflammatory cytokines in dogs with CHF due to mitral valve disease has not yet been extensively investigated. Here, we investigate the role of pro-inflammatory cytokines and the dysfunction of the immune system in dogs with different stages of severity through the blood assessment of CD4+FoxP3+regulatory T cells (Treg) cells, leptin, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and IL-6 pro-inflammatory cytokines, and immunological and echocardiographic parameters. A total of 36 cardiopathic dogs, 14 females and 22 males, with MMVD were included. Mean age and body weight (BW) at the time of enrollment were 10.7 ± 2.77 years and 10.9 ± 6.69 kg, respectively. For the comparison of the pro-inflammatory and immunological parameters, two groups of healthy dogs were also established. Control group 1 consisted of young animals (n. 11; 6 females and 5 males), whose age and mean weight were 4.1 ± 0.82 years and 13.8 ± 4.30 kg, respectively. Control group 2 consisted of elderly dogs (n. 12; 6 females and 6 males), whose age and BW were 9.6 ± 0.98 years and 14.8 ± 6.15 kg, respectively. Of particular interest, an increase in Treg cells was observed in the cohort of MMVD dogs, as compared to the healthy dogs, as Treg cells are involved in the maintenance of peripheral tolerance, and they are involved in etiopathogenetic and pathophysiological mechanisms in the dog. On the other hand, TNF-α, IL-1ß, and IL-6 significantly increased according to the severity of the disease in MMVD dogs. Furthermore, the positive correlation between IL-6 and the left ventricle diastolic volume suggests that inflammatory activation may be involved in cardiac remodeling associated with the progressive volumetric overload in MMVD.

13.
Lab Chip ; 21(21): 4144-4154, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34515262

RESUMO

Natural killer (NK) cells are indicated as favorite candidates for innovative therapeutic treatment and are divided into two subclasses: immature regulatory NK CD56bright and mature cytotoxic NK CD56dim. Therefore, the ability to discriminate CD56dim from CD56bright could be very useful because of their higher cytotoxicity. Nowadays, NK cell classification is routinely performed by cytometric analysis based on surface receptor expression. Here, we present an in-flow, label-free and non-invasive biophysical analysis of NK cells through a combination of light scattering and machine learning (ML) for NK cell subclass classification. In this respect, to identify relevant biophysical cell features, we stimulated NK cells with interleukine-15 inducing a subclass transition from CD56bright to CD56dim. We trained our ML algorithm with sorted NK cell subclasses (≥86% accuracy). Next, we applied our NK cell classification algorithm to cells stimulated over time, to investigate the transition of CD56bright to CD56dim and their biophysical feature changes. Finally, we tested our approach on several proband samples, highlighting the potential of our measurement approach. We show a label-free way for the robust identification of NK cell subclasses based on biophysical features, which can be applied in both cell biology and cell therapy.


Assuntos
Células Matadoras Naturais , Microfluídica , Antígeno CD56 , Humanos
14.
Antioxidants (Basel) ; 10(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34943042

RESUMO

Reactive oxygen species (ROS) participate in the T-cell activation processes. ROS-dependent regulatory networks are usually mediated by peroxides, which are more stable and able to freely migrate inside cells. Superoxide dismutase (SOD)-1 represents the major physiological intracellular source of peroxides. We found that antigen-dependent activation represents a triggering element for SOD-1 production and secretion by human T lymphocytes. A deranged T-cell proinflammatory response characterizes the pathogenesis of multiple sclerosis (MS). We previously observed a decreased SOD-1 intracellular content in leukocytes of MS individuals at diagnosis, with increasing amounts of such enzyme after interferon (IFN)-b 1b treatment. Here, we analyzed in depth SOD-1 intracellular content in T cells in a cohort of MS individuals undergoing immune-modulating treatment. Higher amounts of the enzyme were associated with increased availability of regulatory T cells (Treg) preferentially expressing Foxp3-exon 2 (Foxp3-E2), as described for effective Treg. In vitro administration of recombinant human SOD-1 to activated T cells, significantly increased their IL-17 production, while SOD-1 molecules lacking dismutase activity were unable to interfere with cytokine production by activated T cells in vitro. Furthermore, hydrogen peroxide addition was observed to mimic, in vitro, the SOD-1 effect on IL-17 production. These data add SOD-1 to the molecules involved in the molecular pathways contributing to re-shaping the T-cell cytokine profile and Treg differentiation.

15.
Br J Haematol ; 148(1): 90-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19793254

RESUMO

The myelodysplastic syndromes (MDS) are clonal disorders characterised by ineffective haematopoiesis with high risk of leukaemia progression. The relevance of immune-dysregulation for emergence, dominance and progression of dysplastic clones has been suggested, but valuable criteria to obtain insight into these connections are lacking. This study showed significant increase of CD8 lymphocytes and mature B cells in the bone marrow (BM) compared to peripheral blood (PB) of low risk MDS patients. Different BM levels of Regulatory T cells (Treg) identified two sub-groups in these patients; only the sub-group with lower Treg percentage showed BM recruitment of CD8 lymphocytes. Different levels of CD54 on BM CD8 cells revealed two sub-groups of Intermediate-1 (Int-1) patients. The sub-group with higher CD54 expression on BM CD8 showed high levels of this molecule also on CD4 cells. BM recruitment of CD8 lymphocytes in the low risk group and/or the presence of high CD54 expression on BM CD8 in Int-1 patients were associated with more pronounced dyserythropoiesis and erythropoietin treatment. Our data shed light on the involvement of immune-mediated mechanisms in Low and Int-1 risk MDS patients and suggest that BM versus PB levels of immune effectors could represent useful criteria for a more homogeneous grouping of MDS patients.


Assuntos
Células da Medula Óssea/imunologia , Eritropoese/imunologia , Síndromes Mielodisplásicas/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/fisiopatologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Adulto Jovem
16.
Br J Pharmacol ; 177(4): 884-897, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31392723

RESUMO

BACKGROUND AND PURPOSE: Myeloid-derived suppressor cells (MDSCs) represent a major obstacle to cancer treatment, as they negatively regulate anti-tumour immunity through the suppression of tumour-specific T lymphocytes. Thus, the efficacy of immunotherapies may be improved by targeting MDSCs. In this study, we assessed the ability of hydrogen sulfide (H2 S), a gasotransmitter whose anti-cancer effects are well known, to inhibit the accumulation and immunosuppressive functions of MDSCs in melanoma. EXPERIMENTAL APPROACH: Effects of H2 S on the host immune response to cancer were evaluated using an in vivo syngeneic model of murine melanoma. B16F10-melanoma-bearing mice were treated with the H2 S donor, diallyl trisulfide (DATS) and analysed for content of MDSCs, dendritic cells (DCs) and T cells. Effects of H2 S on expression of immunosuppressive genes in MDSCs and on T cell proliferation were evaluated. KEY RESULTS: In melanoma-bearing mice, DATS inhibited tumour growth, and this effect was associated with a reduction in the frequency of MDSCs in the spleen, in the blood as well as in the tumour micro-environment. In addition, we found that CD8+ T cells and DCs were increased. Furthermore, DATS reduced the immuno-suppressive activity of MDSCs, restoring T cell proliferation. CONCLUSIONS AND IMPLICATIONS: The H2 S donor compound, DATS, inhibited the expansion and the suppressive functions of MDSCs, suggesting a novel role for H2 S as a modulator of MDSCs in cancer. Therefore, H2 S donors may provide a novel approach for enhancing the efficacy of melanoma immunotherapy. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.


Assuntos
Sulfeto de Hidrogênio , Melanoma , Células Supressoras Mieloides , Animais , Linfócitos T CD8-Positivos , Imunoterapia , Camundongos , Microambiente Tumoral
17.
Front Immunol ; 11: 217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117323

RESUMO

With this article, the authors aim to honor the memory of Serafino Zappacosta, who had been their mentor during the early years of their career in science. The authors discuss how the combination of Serafino Zappacosta's extraordinary commitment to teaching and passion for science created a fostering educational environment that led to the creation of the "Ruggero Ceppellini Advanced School of Immunology." The review also illustrates how the research on the MHC and the inspirational scientific context in the Zappacosta's laboratory influenced the authors' early scientific interests, and subsequent professional work as immunologists.


Assuntos
Alergia e Imunologia/história , Linfócitos T/imunologia , Alergia e Imunologia/educação , História do Século XX , História do Século XXI , Humanos , Imunidade Celular , Complexo Principal de Histocompatibilidade , Masculino , Mentores , Pesquisa
18.
Front Vet Sci ; 7: 398, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32851001

RESUMO

This study aimed to investigate the effects of a weight loss program (WLP) on biochemical and immunological profile, and cardiovascular parameters in a cohort of dogs with naturally occurring obesity. Eleven obese dogs [body condition scoring (BCS), ≥7/9] were enrolled into the study and underwent clinical and cardiovascular examination, and blood testing before (T0) and after 6 months (T1) of WLP. Eleven normal weight (BCS, 4/5) healthy dogs were used as a control (CTR) group. Compared to the CTR group, at T0 obese dogs expressed higher serum leptin concentrations (p < 0.0005) that significantly decreased after weight loss (p < 0.005) but remained higher than the CTR group. Furthermore, obese dogs showed considerably lower levels (p < 0.0005) of regulatory T cell (Treg) compared to the CTR group, but they did not change after weight loss at T1. In obese dogs, tumor necrosis factor (TNF)-α and interleukin (IL)-6 concentrations were substantially reduced at T1 (p < 0.0001 and p < 0.005). Regarding the cardiovascular parameters, only one obese dog was hypertensive at T0, and systolic blood pressure values showed no significant differences at the end of the WLP. The ratio of interventricular septal thickness in diastole to left ventricle internal diameter in diastole (IVSd/LVIDd) was significantly greater in obese dogs at T0 than in the CTR group (p < 0.005). It decreased after weight loss (p < 0.05). In obese dogs, troponin I level significantly reduced with weight loss (p < 0.05), while endothelin-1 level did not differ statistically. The results suggest that the immune dysregulation in the presence of high leptin levels and reduced number of Treg could affect obese dogs as well as humans. Based on our findings, we may speculate that a more complete immune-regulation restore could be obtained by a greater reduction in fat mass and a longer-term WLP. Finally, left ventricular remodeling may occur in some obese dogs. However, in canine species, further studies are needed to investigate the impact of obesity and related WLP on cardiovascular system.

19.
Nat Metab ; 2(2): 142-152, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32500117

RESUMO

An unresolved issue in autoimmunity is the lack of surrogate biomarkers of immunological self-tolerance for disease monitoring. Here, we show that peripheral frequency of a regulatory T cell population, characterized by the co-expression of CD3 and CD56 molecules (TR3-56), is reduced in subjects with new-onset type 1 diabetes (T1D). In three independent T1D cohorts, we find that low frequency of circulating TR3-56 cells is associated with reduced ß-cell function and with the presence of diabetic ketoacidosis. As autoreactive CD8+ T cells mediate disruption of insulin-producing ß-cells1-3, we demonstrate that TR3-56 cells can suppress CD8+ T cell functions in vitro by reducing levels of intracellular reactive oxygen species. The suppressive function, phenotype and transcriptional signature of TR3-56 cells are also altered in T1D children. Together, our findings indicate that TR3-56 cells constitute a regulatory cell population that controls CD8+ effector functions, whose peripheral frequency may represent a traceable biomarker for monitoring immunological self-tolerance in T1D.


Assuntos
Complexo CD3/imunologia , Antígeno CD56/imunologia , Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Linfócitos T Reguladores/imunologia , Biomarcadores/metabolismo , Criança , Progressão da Doença , Feminino , Humanos , Masculino , Monitorização Imunológica
20.
Front Pharmacol ; 10: 1456, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920649

RESUMO

CRISPR/Cas9 has become a powerful method to engineer genomes and to activate or to repress genes expression. As such, in cancer research CRISPR/Cas9 technology represents an efficient tool to dissect mechanisms of tumorigenesis and to discover novel targets for drug development. Here, we employed the CRISPR/Cas9 technology for studying the role of prostaglandin-endoperoxide synthase 2 (PTGS2) in melanoma development and progression. Melanoma is the most aggressive form of skin cancer with a median survival of less than 1 year. Although oncogene-targeted drugs and immune checkpoint inhibitors have demonstrated a significant success in improving overall survival in patients, related toxicity and emerging resistance are ongoing challenges. Gene therapy appears to be an appealing option to enhance the efficacy of currently available melanoma therapeutics leading to better patient prognosis. Several gene therapy targets have been identified and have proven to be effective against melanoma cells. Particularly, PTGS2 is frequently expressed in malignant melanomas and its expression significantly correlates with poor survival in patients. In this study we investigated on the effect of ptgs2 knockdown in B16F10 murine melanoma cells. Our results show that reduced expression of ptgs2 in melanoma cells: i) inhibits cell proliferation, migration, and invasiveness; ii) modulates immune response by impairing myeloid derived suppressor cell differentiation; iii) reduces tumor development and metastasis in vivo. Collectively, these findings indicate that ptgs2 could represent an ideal gene to be targeted to improve success rates in the development of new and highly selective drugs for melanoma treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA