RESUMO
Intensive crop production on grassland-derived Mollisols has liberated massive amounts of carbon (C) to the atmosphere. Whether minimizing soil disturbance, diversifying crop rotations, or re-establishing perennial grasslands and integrating livestock can slow or reverse this trend remains highly uncertain. We investigated how these management practices affected soil organic carbon (SOC) accrual and distribution between particulate (POM) and mineral-associated (MAOM) organic matter in a 29-y-old field experiment in the North Central United States and assessed how soil microbial traits were related to these changes. Compared to conventional continuous maize monocropping with annual tillage, systems with reduced tillage, diversified crop rotations with cover crops and legumes, or manure addition did not increase total SOC storage or MAOM-C, whereas perennial pastures managed with rotational grazing accumulated more SOC and MAOM-C (18 to 29% higher) than all annual cropping systems after 29 y of management. These results align with a meta-analysis of data from published studies comparing the efficacy of soil health management practices in annual cropping systems on Mollisols worldwide. Incorporating legumes and manure into annual cropping systems enhanced POM-C, microbial biomass, and microbial C-use efficiency but did not significantly increase microbial necromass accumulation, MAOM-C, or total SOC storage. Diverse, rotationally grazed pasture management has the potential to increase persistent soil C on Mollisols, highlighting the key role of well-managed grasslands in climate-smart agriculture.
Assuntos
Agricultura/métodos , Ração Animal , Carbono/química , Produtos Agrícolas/fisiologia , Pradaria , Solo/química , Animais , Bovinos , Indústria de LaticíniosRESUMO
Labile organic carbon (C) substrates could accelerate microbial transformation of soil N pool by stimulating the decomposition of large molecule organic N. However, it remains unclear how gross N transformation processes (protein depolymerization, amino acid uptake, microbial N mineralization and NH4+-N uptake rates) in response to individual C substrates. Typical paddy soil was incubated with the supplement of oxalic acid or glucose under simulated field water conditions for 16 days to assess the gross N transformation rates by 15N pool dilution assays. A mixture of 15N labeled amino acid was applied to gross protein depolymerization and amino acid uptake rates measurement, and 15N-(NH4)2SO4 was used to gross microbial N mineralization and NH4+-N uptake rates analyses. Oxalic acid supplement promoted the gross protein depolymerization, gross microbial uptake of amino acid, and gross N mineralization rates at the early stage. It was attributed that oxalic acid supplement urged microbes to decompose large molecular organic N to acquire amino acid derived C and excluded the superfluous N via mineralization as evidenced by the increase of NH4+-N. By contrast, glucose supplement diminished the gross N transformation processes, since microbes prefer to utilize the native NH4+-N to meet their N demand supported by the decreasing NH4+-N concentration in soil, and consequently inhibited the decomposition for the large molecule organic N. With the increase of microbial growth, especially for bacteria, glucose amendment stimulated the large molecular organic N depolymerization to acquire amino acid to maintain the microbial C/N stoichiometric balance. Compared to glucose treatment, oxalic acid supplement stimulated more N allocation into microbial growth but not for mineralization, and thus led to higher microbial N use efficiency, which was adverse for available inorganic N supply for rice growth in paddy ecosystem. Overall, this study emphasizes that low molecular organic C substrates of organic acid and glucose exerted contrasting influences on gross N transformation, and help to improve our understanding of the mechanism of the coupling biotransformation of C and N in paddy soil.
RESUMO
The importance of the rare microbial biosphere in maintaining biodiversity and ecological functions has been highlighted recently. However, the current understanding of the spatial distribution of rare microbial taxa is still limited, with only a few investigations for rare prokaryotes and virtually none for rare fungi. Here, we investigated the spatial patterns of rare and abundant fungal taxa in alpine grassland soils across 2,000 km of the Qinghai-Tibetan plateau. We found that most locally rare fungal taxa remained rare (13.07%) or were absent (82.85%) in other sites, whereas only a small proportion (4.06%) shifted between rare and abundant among sites. Although they differed in terms of diversity levels and compositions, the distance decay relationships of both the rare and the abundant fungal taxa were valid and displayed similar turnover rates. Moreover, the community assemblies of both rare and abundant fungal taxa were predominantly controlled by deterministic rather than stochastic processes. Notably, the community composition of rare rather than abundant fungal taxa associated with the plant community composition. In summary, this study advances our understanding of the biogeographic features of rare fungal taxa in alpine grasslands and highlights the concordance between plant communities and rare fungal subcommunities in soil. IMPORTANCE Our current understanding of the ecology and functions of rare microbial taxa largely relies on research conducted on prokaryotes. Despite the key ecological roles of soil fungi, little is known about the biogeographic patterns and drivers of rare and abundant fungi in soils. In this study, we investigated the spatial patterns of rare and abundant fungal taxa in Qinghai-Tibetan plateau (QTP) alpine grassland soils across 2,000 km, with a special concentration on the importance of the plant communities in shaping rare fungal taxa. We showed that rare fungal taxa generally had a biogeographic pattern that was similar to that of abundant fungal taxa in alpine grassland soils on the QTP. Furthermore, the plant community composition was strongly related to the community composition of rare taxa but not abundant taxa. In summary, this study significantly increases our biogeographic and ecological knowledge of rare fungal taxa in alpine grassland soils.
Assuntos
Pradaria , Solo , Plantas , Biodiversidade , Tibet , Microbiologia do SoloRESUMO
P or PK addition significantly affected microbial CUE. No significant linear correlation between respiration rates and microbial CUE under N addition when NP and NPK addition were excluded.
RESUMO
Paddy soils make up the largest anthropogenic wetlands on earth, and are characterized by a prominent potential for organic carbon (C) sequestration. By quantifying the plant- and microbial-derived C in soils across four climate zones, we identified that organic C accrual is achieved via contrasting pathways in paddy and upland soils. Paddies are 39%-127% more efficient in soil organic C (SOC) sequestration than their adjacent upland counterparts, with greater differences in warmer than cooler climates. Upland soils are more replenished by microbial-derived C, whereas paddy soils are enriched with a greater proportion of plant-derived C, because of the retarded microbial decomposition under anaerobic conditions induced by the flooding of paddies. Under both land-use types, the maximal contribution of plant residues to SOC is at intermediate mean annual temperature (15-20°C), neutral soil (pH~7.3), and low clay/sand ratio. By contrast, high temperature (~24°C), low soil pH (~5), and large clay/sand ratio are favorable for strengthening the contribution of microbial necromass. The greater contribution of microbial necromass to SOC in waterlogged paddies in warmer climates is likely due to the fast anabolism from bacteria, whereas fungi are unlikely to be involved as they are aerobic. In the scenario of land-use conversion from paddy to upland, a total of 504 Tg C may be lost as CO2 from paddy soils (0-15 cm) solely in eastern China, with 90% released from the less protected plant-derived C. Hence, preserving paddy systems and other anthropogenic wetlands and increasing their C storage through sustainable management are critical for maintaining global soil C stock and mitigating climate change.
Assuntos
Sequestro de Carbono , Oryza , Agricultura , Carbono/análise , China , SoloRESUMO
The technique of acoustic emission (AE) source localization is critical for studying material failure mechanism and predicting the position of potential hazards. Most existing positioning methods heavily depend on the premeasured wave velocity and are not suitable for complex engineering practices where the wave velocity changes dynamically. To reduce the influence of measurement error of wave velocity on location accuracy, this paper proposes a new algebraic solution for AE source localization without premeasuring wave velocity. In this method, the nonlinear TDOA equations are established and linearized by introducing two intermediate variables. Then, by minimizing the sum of squared residuals of the linear TDOA equations with respect to the AE source coordinate and two intermediate variables separately, the optimal algebraic solution of the AE source coordinate in the least squares sense is obtained. A pencil-lead breaks experiment is performed to validate the positioning effectiveness of the proposed method. The results show that the new method improves the positioning accuracy by more than 40% compared with two pre-existing methods, and the minimum positioning accuracy of the proposed method can reach 1.12 mm. Moreover, simulation tests are conducted to further verify the location performance of the proposed method under different TDOA errors and the number of sensors.
RESUMO
The location of an acoustic emission (AE) source is crucial for predicting and controlling potential hazards. In this paper, a novel weighted linear least squares location method for AE sources without measuring wave velocity is proposed. First, the governing equations of each sensor are established according to the sensor coordinates and arrival times. Second, a mean reference equation is established by taking the mean of the squared governing equations. Third, the system of linear equations can be obtained based on the mean reference equation, and their residuals are estimated to obtain their weights. Finally, the AE source coordinate is obtained by weighting the linear equations and inserting the parameter constraint. The AE location method is verified by a pencil lead break experiment, and the results show that the locating accuracy of the proposed method is significantly higher than that of traditional methods. Furthermore, the simulation test proves that the proposed method also has a better performance (location accuracy and stability) than the traditional methods under any given scale of arrival errors.
RESUMO
A closed-form method of acoustic emission (AE) source location for a velocity-free system using complete time difference of arrival (TDOA) measurements is proposed in this paper. First, this method established the governing equation of unknown acoustic velocity for each sensor; then, the governing equations of each of the three sensors were transformed into a linear equation, which can form a system of linear equations with the complete TDOA measurements. Third, the least squares solutions of the AE source coordinate and acoustic velocity were separately solved by an orthogonal projection operator. The proposed method was verified by the pencil-lead break experiment, and the results showed that the location accuracy and stability of the proposed method were better than those of traditional methods. Moreover, a simulation test was carried out to investigate the influence of noise scales on the location accuracy, and the results further prove that the proposed method holds higher noise immunity than the traditional methods.
RESUMO
Uncertainty about the effects of warming and grazing on soil nitrogen (N) availability, species composition, and aboveground net primary production (ANPP) limits our ability to predict how global carbon sequestration will vary under future warming with grazing in alpine regions. Through a controlled asymmetrical warming (1.2/1.7 degrees C during daytime/nighttime) with a grazing experiment from 2006 to 2010 in an alpine meadow, we found that warming alone and moderate grazing did not significantly affect soil net N mineralization. Although plant species richness significantly decreased by 10% due to warming after 2008, we caution that this may be due to the transient occurrence or disappearance of some rare plant species in all treatments. Warming significantly increased graminoid cover, except in 2009, and legume cover after 2008, but reduced non-legume forb cover in the community. Grazing significantly decreased cover of graminoids and legumes before 2009 but increased forb cover in 2010. Warming significantly increased ANPP regardless of grazing, whereas grazing reduced the response of ANPP to warming. N addition did not affect ANPP in both warming and grazing treatments. Our findings suggest that soil N availability does not determine ANPP under simulated warming and that heavy grazing rather than warming causes degradation of the alpine meadows.
Assuntos
Nitrogênio/química , Plantas/classificação , Solo/química , Animais , Biomassa , Mudança Climática , Ecossistema , Fertilizantes , Nitrogênio/metabolismo , Desenvolvimento Vegetal , Plantas/genética , Especificidade da Espécie , Fatores de TempoRESUMO
Knowledge about methanotrophs and their activities is important to understand the microbial mediation of the greenhouse gas CH(4) under climate change and human activities in terrestrial ecosystems. The effects of simulated warming and sheep grazing on methanotrophic abundance, community composition, and activity were studied in an alpine meadow soil on the Tibetan Plateau. There was high abundance of methanotrophs (1.2-3.4 × 10(8) pmoA gene copies per gram of dry weight soil) assessed by real-time PCR, and warming significantly increased the abundance regardless of grazing. A total of 64 methanotrophic operational taxonomic units (OTUs) were obtained from 1,439 clone sequences, of these OTUs; 63 OTUs (98.4%) belonged to type I methanotrophs, and only one OTU was Methylocystis of type II methanotrophs. The methanotroph community composition and diversity were not apparently affected by the treatments. Warming and grazing significantly enhanced the potential CH(4) oxidation activity. There were significantly negative correlations between methanotrophic abundance and soil moisture and between methanotrophic abundance and NH(4)-N content. The study suggests that type I methanotrophs, as the dominance, may play a key role in CH(4) oxidation, and the alpine meadow has great potential to consume more CH(4) under future warmer and grazing conditions on the Tibetan Plateau.
Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biota , Metano/metabolismo , Microbiologia do Solo , Amônia/análise , Animais , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Oxirredução , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Ovinos , Solo/química , Temperatura , TibetRESUMO
The microbial remediation technology had great potential and attracted attention to total petroleum hydrocarbon pollution (TPH) remediation, but its efficiency is limited by its application in the field. In this study, a new TPH-degrading strain, TDYN1, was isolated from contaminated oil soil in Dagang Oilfield in Tianjin, China, and identified as Falsochrobactrum sp. by 16S rRNA sequence analysis. The physiological characterization of the isolate was observed. The orthogonal experiment was carried out for the optimum degradation conditions to improve its biodegradation efficiency. The strain was the gram-stain-negative, short rod-shaped, non-spore-forming, designated Falsochrobactrum tianjinense sp. nov (strain TDYN1); it had 3.51 Mb, and the DNA G + C content of the strain was 56.0%. The degradation rate of TDYN1 was 69.95% after 7 days of culture in optimal degradation conditions (temperature = 30 °C, pH = 8, salinity = 10 g L-1, petroleum concentration = 1 g L-1, and the inoculation dose of strain TDYN1 = 6%) and also reached more than 30% under other relatively extreme conditions. It suggested that the TDYN1 has great potential for TPH remediation in the soils of North China.
Assuntos
Petróleo , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Petróleo/análise , Filogenia , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo , Poluentes do Solo/análiseRESUMO
To improve the noise immunity to time-difference-of-arrival (TDOA) measurements and reduce the influence of wave velocity measurement error on localization accuracy, a novel linear-correction localization method of acoustic emission (AE) source for velocity-free system based on the TDOA measurements is proposed in this paper. First, the linear equations with unknown wave velocity are constructed by introducing two intermediate variables, and they are solved for the unconstrained least square (LS) solution. Second, the weight matrix is obtained by estimating the equation residuals. Third, the weight matrix and quadratic constraint are imposed on LS estimate to construct the constrained weighted least square (CWLS) criterion. Finally, the linear correction technique is used to minimize the CWLS criterion and obtain the optimal estimate. The proposed method is verified by pencil-lead breaks experiment. The results show that the locating accuracy and stability of the proposed method are higher than those of the traditional methods. Furthermore, simulation tests prove that the proposed method holds the optimal positioning performance and can reach Cramér-Rao lower bound (CRLB) under different TDOA noise powers.
RESUMO
Understanding drivers of straw decomposition is essential for adopting appropriate management practice to improve soil fertility and promote carbon (C) sequestration in agricultural systems. However, predicting straw decomposition and characteristics is difficult because of the interactions between many factors related to straw properties, soil properties, and climate, especially under future climate change conditions. This study investigated the driving factors of straw decomposition of six types of crop straw including wheat, maize, rice, soybean, rape, and other straw by synthesizing 1642 paired data from 98 published papers at spatial and temporal scales across China. All the data derived from the field experiments using little bags over twelve years. Overall, despite large differences in climatic and soil properties, the remaining straw carbon (C, %) could be accurately represented by a three-exponent equation with thermal time (accumulative temperature). The lignin/nitrogen and lignin/phosphorus ratios of straw can be used to define the size of labile, intermediate, and recalcitrant C pool. The remaining C for an individual type of straw in the mild-temperature zone was higher than that in the warm-temperature and subtropical zone within one calendar year. The remaining straw C after one thermal year was 40.28%, 37.97%, 37.77%, 34.71%, 30.87%, and 27.99% for rice, soybean, rape, wheat, maize, and other straw, respectively. Soil available nitrogen and phosphorus influenced the remaining straw C at different decomposition stages. For one calendar year, the total amount of remaining straw C was estimated to be 29.41â¯Tg and future temperature increase of 2⯰C could reduce the remaining straw C by 1.78â¯Tg. These findings confirmed the long-term straw decomposition could be mainly driven by temperature and straw quality, and quantitatively predicted by thermal time with the three-exponent equation for a wide array of straw types at spatial and temporal scales in agro-ecosystems of China.
RESUMO
Incorporation of crop residues is essential to enhance soil organic matter in arable ecosystems. Here, we monitored the dynamics of cellulose and lignin, the most abundant constituents of plant residues, and their relationships with enzyme activities, microbial gene abundances and soil properties after 13-year long-term and one-year short-term crop straw incorporation into upland and upland-paddy soils in a field-based experiment. Lignin, rather than cellulose, accumulated in both soils following straw incorporation. Cellulose was almost completely converted into non-cellulose forms within 6 and 3 months after straw incorporation into upland and upland-paddy rotation soils, respectively. Whereas, lignin accumulated at the rate of 129 and 137 mg kg-1 yr-1 within 13 years' straw incorporation in upland and upland-paddy rotation, respectively. The predominance of recalcitrant vanillyl monomers in upland-paddy rotation indicated a high stability of lignin. Structural equation models revealed that the key factor driving cellulose and lignin dynamics was available nitrogen, followed by enzymes activities (cellobiohydrolases and laccases) and functional genes abundances (cbhI and laccase-like) as mediated by soil pH. Our findings highlighted that upland might have higher carbon sequestration rate, whereas upland-paddy rotation system was more beneficial for accumulation of recalcitrant organic fractions under crop residue incorporation.
Assuntos
Agricultura/métodos , Celulose/análise , Lignina/análise , Solo/química , Biotransformação , Estudos LongitudinaisRESUMO
One of the greatest contemporary challenges in terrestrial ecology is to determine the impact of climate change on the world's ecosystems. Here we investigated how wetting patterns (frequency and intensity) and nutrient additions altered microbial biomass and CO2-C loss from a semi-arid soil. South-western Australia is predicted to experience declining annual rainfall but increased frequency of summer rainfall events when soil is fallow. Agricultural soils (0-10 cm at 10 °C or 25 °C) received the same total amount of water (15 mL over 30 days) applied at different frequency; with either nil or added nitrogen and phosphorus. Smaller more frequent wetting applications resulted in less CO2-C loss (P < 0.001); with cumulative CO2-C loss 35% lower than a single wetting event. This coincided with increased microbial biomass C at 25 °C but a decline at 10 °C. Increasing nutrient availability decreased CO2-C loss only under a single larger wetting event. While bacterial and fungal abundance remained unchanged, archaeal abundance and laccase-like copper monooxidase gene abundance increased with more frequent wetting at 25 °C. Our findings suggest smaller more frequent summer rainfall may decrease CO2 emissions compared to infrequent larger events; and enhance microbial C use efficiency where sufficient background soil organic matter and nutrients are available.
Assuntos
Biomassa , Dióxido de Carbono/química , Carbono/análise , Clima Desértico , Solo/química , Temperatura , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Fungos/genética , Fungos/metabolismo , Nitratos/análise , Água , MolhabilidadeRESUMO
The existing acoustic emission (AE) source location methods assume that acoustic waves propagate along straight lines, and the source location is determined by average wave velocity. Because of the heterogeneity of materials, location results often fail to meet the accuracy requirement. For this reason, an AE source location method considering refraction in different media was proposed in this paper. According to sensor coordinates, the arrival time of acoustic waves, the velocities of acoustic waves in two kinds of media, the space-time relation equations of the AE source point and the measuring point were established by the precise coordinates of the AE source based on Snell's law. The feasibility of the algorithm was verified by experiments, and the factors influencing location accuracy were also analysed. The results show that the algorithm proposed in this paper is applicable for both the same medium and different media, and the accuracy of localization is not affected by the ratio of wave velocities in two media or the distance from the AE source to the refraction surface.
RESUMO
Rebuilding 'lost' soil carbon (C) is a priority in mitigating climate change and underpinning key soil functions that support ecosystem services. Microorganisms determine if fresh C input is converted into stable soil organic matter (SOM) or lost as CO2. Here we quantified if microbial biomass and respiration responded positively to addition of light fraction organic matter (LFOM, representing recent inputs of plant residue) in an infertile semi-arid agricultural soil. Field trial soil with different historical plant residue inputs [soil C content: control (tilled) = 9.6 t C ha-1 versus tilled + plant residue treatment (tilled + OM) = 18.0 t C ha-1] were incubated in the laboratory with a gradient of LFOM equivalent to 0 to 3.8 t C ha-1 (0 to 500% LFOM). Microbial biomass C significantly declined under increased rates of LFOM addition while microbial respiration increased linearly, leading to a decrease in the microbial C use efficiency. We hypothesise this was due to insufficient nutrients to form new microbial biomass as LFOM input increased the ratio of C to nitrogen, phosphorus and sulphur of soil. Increased CO2 efflux but constrained microbial growth in response to LFOM input demonstrated the difficulty for C storage in this environment.
Assuntos
Biomassa , Sequestro de Carbono , Luz , Compostos Orgânicos , Microbiologia do Solo , Solo/química , Modelos TeóricosRESUMO
Understanding of effects of soil temperature and soil moisture on soil respiration (Rs) under future warming is critical to reduce uncertainty in predictions of feedbacks to atmospheric CO2 concentrations from grassland soil carbon. Intact cores with roots taken from a full factorial, 5-year alpine meadow warming and grazing experiment in the field were incubated at three different temperatures (i.e. 5, 15 and 25°C) with two soil moistures (i.e. 30 and 60% water holding capacity (WHC)) in our study. Another experiment of glucose-induced respiration (GIR) with 4 h of incubation was conducted to determine substrate limitation. Our results showed that high temperature increased Rs and low soil moisture limited the response of Rs to temperature only at high incubation temperature (i.e. 25°C). Temperature sensitivity (Q10) did not significantly decrease over the incubation period, suggesting that substrate depletion did not limit Rs. Meanwhile, the carbon availability index (CAI) was higher at 5°C compared with 15 and 25°C incubation, but GIR increased with increasing temperature. Therefore, our findings suggest that warming-induced decrease in Rs in the field over time may result from a decrease in soil moisture rather than from soil substrate depletion, because warming increased root biomass in the alpine meadow.