Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cereb Cortex ; 31(7): 3338-3352, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33693614

RESUMO

Autism spectrum disorder (ASD) is associated with atypical brain development. However, the phenotype of regionally specific increased cortical thickness observed in ASD may be driven by several independent biological processes that influence the gray/white matter boundary, such as synaptic pruning, myelination, or atypical migration. Here, we propose to use the boundary sharpness coefficient (BSC), a proxy for alterations in microstructure at the cortical gray/white matter boundary, to investigate brain differences in individuals with ASD, including factors that may influence ASD-related heterogeneity (age, sex, and intelligence quotient). Using a vertex-based meta-analysis and a large multicenter structural magnetic resonance imaging (MRI) dataset, with a total of 1136 individuals, 415 with ASD (112 female; 303 male), and 721 controls (283 female; 438 male), we observed that individuals with ASD had significantly greater BSC in the bilateral superior temporal gyrus and left inferior frontal gyrus indicating an abrupt transition (high contrast) between white matter and cortical intensities. Individuals with ASD under 18 had significantly greater BSC in the bilateral superior temporal gyrus and right postcentral gyrus; individuals with ASD over 18 had significantly increased BSC in the bilateral precuneus and superior temporal gyrus. Increases were observed in different brain regions in males and females, with larger effect sizes in females. BSC correlated with ADOS-2 Calibrated Severity Score in individuals with ASD in the right medial temporal pole. Importantly, there was a significant spatial overlap between maps of the effect of diagnosis on BSC when compared with cortical thickness. These results invite studies to use BSC as a possible new measure of cortical development in ASD and to further examine the microstructural underpinnings of BSC-related differences and their impact on measures of cortical morphology.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Mapeamento Encefálico/métodos , Córtex Cerebral/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
Hum Brain Mapp ; 42(2): 467-484, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33094897

RESUMO

Autism spectrum disorder (ASD) is a highly complex neurodevelopmental condition that is accompanied by neuroanatomical differences on the macroscopic and microscopic level. Findings from histological, genetic, and more recently in vivo neuroimaging studies converge in suggesting that neuroanatomical abnormalities, specifically around the gray-white matter (GWM) boundary, represent a crucial feature of ASD. However, no research has yet characterized the GWM boundary in ASD based on measures of diffusion. Here, we registered diffusion tensor imaging data to the structural T1-weighted images of 92 adults with ASD and 92 matched neurotypical controls in order to examine between-group differences and group-by-sex interactions in fractional anisotropy and mean diffusivity sampled at the GWM boundary, and at different sampling depths within the superficial white and into the gray matter. As hypothesized, we observed atypical diffusion at and around the GWM boundary in ASD, with between-group differences and group-by-sex interactions depending on tissue class and sampling depth. Furthermore, we identified that altered diffusion at the GWM boundary partially (i.e., ~50%) overlapped with atypical gray-white matter tissue contrast in ASD. Our study thus replicates and extends previous work highlighting the GWM boundary as a crucial target of neuropathology in ASD, and guides future work elucidating etiological mechanisms.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Substância Cinzenta/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adolescente , Adulto , Transtorno do Espectro Autista/fisiopatologia , Encéfalo/fisiopatologia , Feminino , Substância Cinzenta/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Substância Branca/fisiopatologia , Adulto Jovem
3.
Mol Psychiatry ; 25(9): 2175-2188, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-30104728

RESUMO

Early-onset neurodevelopmental conditions (e.g., autism) affect males more frequently than females. Androgens may play a role in this male-bias by sex-differentially impacting early prenatal brain development, particularly neural circuits that later develop specialized roles in social cognition. Here, we find that increasing prenatal testosterone in humans is associated with later reduction of functional connectivity between social brain default mode (DMN) subsystems in adolescent males, but has no effect in females. Since testosterone can work directly via the androgen receptor (AR) or indirectly via the estrogen receptor through aromatase conversion to estradiol, we further examined how a potent non-aromatizable androgen, dihydrotestosterone (DHT), acts via the AR to influence gene expression in human neural stem cells (hNSC)-particularly for genes of high-relevance for DMN circuitry. DHT dysregulates a number of genes enriched for syndromic causes of autism and intellectual disability and for genes that in later development are expressed in anatomical patterns that highly correspond to the cortical midline DMN subsystem. DMN-related and DHT-affected genes (e.g., MEF2C) are involved in a number of synaptic processes, many of which impact excitation-inhibition balance. Androgens have male-specific prenatal influence over social brain circuitry in humans and may be relevant towards explaining some component of male-bias in early-onset neurodevelopmental conditions.


Assuntos
Androgênios , Di-Hidrotestosterona , Adolescente , Encéfalo , Estradiol , Feminino , Humanos , Masculino , Testosterona
4.
Mol Psychiatry ; 25(3): 614-628, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31028290

RESUMO

Significant heterogeneity across aetiologies, neurobiology and clinical phenotypes have been observed in individuals with autism spectrum disorder (ASD). Neuroimaging-based neuroanatomical studies of ASD have often reported inconsistent findings which may, in part, be attributable to an insufficient understanding of the relationship between factors influencing clinical heterogeneity and their relationship to brain anatomy. To this end, we performed a large-scale examination of cortical morphometry in ASD, with a specific focus on the impact of three potential sources of heterogeneity: sex, age and full-scale intelligence (FIQ). To examine these potentially subtle relationships, we amassed a large multi-site dataset that was carefully quality controlled (yielding a final sample of 1327 from the initial dataset of 3145 magnetic resonance images; 491 individuals with ASD). Using a meta-analytic technique to account for inter-site differences, we identified greater cortical thickness in individuals with ASD relative to controls, in regions previously implicated in ASD, including the superior temporal gyrus and inferior frontal sulcus. Greater cortical thickness was observed in sex specific regions; further, cortical thickness differences were observed to be greater in younger individuals and in those with lower FIQ, and to be related to overall clinical severity. This work serves as an important step towards parsing factors that influence neuroanatomical heterogeneity in ASD and is a potential step towards establishing individual-specific biomarkers.


Assuntos
Transtorno do Espectro Autista/patologia , Encéfalo/anatomia & histologia , Encéfalo/patologia , Adolescente , Adulto , Fatores Etários , Córtex Cerebral/patologia , Criança , Pré-Escolar , Bases de Dados Factuais , Feminino , Humanos , Inteligência/fisiologia , Testes de Inteligência , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neuroimagem , Caracteres Sexuais
5.
Hum Brain Mapp ; 40(18): 5354-5369, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31464062

RESUMO

Autism is a neurodevelopmental condition characterized by atypical brain functional organization. Here we investigated the intrinsic indirect (semi-metric) connectivity of the functional connectome associated with autism. Resting-state functional magnetic resonance imaging scans were acquired from 65 neurotypical adults (33 males/32 females) and 61 autistic adults (30 males/31 females). From functional connectivity networks, semi-metric percentages (SMPs) were calculated to assess the proportion of indirect shortest functional pathways at global, hemisphere, network, and node levels. Group comparisons were then conducted to ascertain differences between autism and neurotypical control groups. Finally, the strength and length of edges were examined to explore the patterns of semi-metric connections associated with autism. Compared with neurotypical controls, autistic adults displayed significantly higher SMP at all spatial scales, similar to prior observations in adolescents. Differences were primarily in weaker, longer-distance edges in the majority between networks. However, no significant diagnosis-by-sex interaction effects were observed on global SMP. These findings suggest increased indirect functional connectivity in the autistic brain is persistent from adolescence to adulthood and is indicative of reduced functional network integration.


Assuntos
Transtorno Autístico/diagnóstico por imagem , Transtorno Autístico/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Adulto , Conectoma/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
6.
Cereb Cortex ; 27(2): 877-887, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28057721

RESUMO

Atypical cortical organization and reduced integrity of the gray-white matter boundary have been reported by postmortem studies in individuals with autism spectrum disorder (ASD). However, there are no in vivo studies that examine these particular features of cortical organization in ASD. Hence, we used structural magnetic resonance imaging to examine differences in tissue contrast between gray and white matter in 98 adults with ASD and 98 typically developing controls, to test the hypothesis that individuals with ASD have significantly reduced tissue contrast. More specifically, we examined contrast as a percentage between gray and white matter tissue signal intensities (GWPC) sampled at the gray-white matter boundary, and across different cortical layers. We found that individuals with ASD had significantly reduced GWPC in several clusters throughout the cortex (cluster, P < 0.05). As expected, these reductions were greatest when tissue intensities were sampled close to gray-white matter interface, which indicates a less distinct gray-white matter boundary in ASD. Our in vivo findings of reduced GWPC in ASD are therefore consistent with prior postmortem findings of a less well-defined gray-white matter boundary in ASD. Taken together, these results indicate that GWPC might be utilized as an in vivo proxy measure of atypical cortical microstructural organization in future studies.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adolescente , Adulto , Algoritmos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Caracteres Sexuais , Adulto Jovem
7.
J Neurosci Res ; 95(1-2): 380-397, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27870420

RESUMO

The male preponderance in autism prevalence has brought together the disparate topics of sex/gender and autism research. Two directions of neuroimaging studies on the relationships between sex/gender and autism may inform male-specific risk mechanisms and female-specific protective mechanisms of autism. First, we review how sex/gender moderates autism-related brain changes and how this informs general models of autism etiology. Better-powered human neuroimaging studies suggest that the brain characteristics of autism are qualitatively, rather than simply quantitatively, different between males and females. However, age and comorbidities might substantially moderate the pattern of differences. Second, we review how the relationship between autism-related brain changes (separately in males and females) and normative brain sex/gender differences informs specific etiological-developmental mechanisms. Both human and animal studies converge to indicate that the brain characteristics of autism are partly associated with normative brain sex/gender differences, suggesting convergence or overlap between the mechanisms leading to and modifying the development of autism and the mechanisms underlying sex differentiation and/or gender socialization. Future animal work needs to investigate sex differences in rodent mutants modeling autism-relevant genes and environmental exposures. Future human work needs to address the substantial phenotypic and etiological heterogeneity of autism and to focus on longitudinal neuroimaging studies (from early development) on the developmental trajectories of sex/gender-differential neural characteristics of autism. Combining animal and human work links up the causal chain from etiological factors, brain and physical development, to phenotypes. These together help delineate the different roles of sex and gender in relation to risk vs. protective mechanisms. © 2016 Wiley Periodicals, Inc.


Assuntos
Transtorno Autístico/diagnóstico por imagem , Transtorno Autístico/etiologia , Encéfalo/diagnóstico por imagem , Neuroimagem , Caracteres Sexuais , Envelhecimento , Encéfalo/patologia , Feminino , Humanos , Masculino
8.
Brain ; 139(Pt 2): 616-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26912520

RESUMO

It has been postulated that autism spectrum disorder is underpinned by an 'atypical connectivity' involving higher-order association brain regions. To test this hypothesis in a large cohort of adults with autism spectrum disorder we compared the white matter networks of 61 adult males with autism spectrum disorder and 61 neurotypical controls, using two complementary approaches to diffusion tensor magnetic resonance imaging. First, we applied tract-based spatial statistics, a 'whole brain' non-hypothesis driven method, to identify differences in white matter networks in adults with autism spectrum disorder. Following this we used a tract-specific analysis, based on tractography, to carry out a more detailed analysis of individual tracts identified by tract-based spatial statistics. Finally, within the autism spectrum disorder group, we studied the relationship between diffusion measures and autistic symptom severity. Tract-based spatial statistics revealed that autism spectrum disorder was associated with significantly reduced fractional anisotropy in regions that included frontal lobe pathways. Tractography analysis of these specific pathways showed increased mean and perpendicular diffusivity, and reduced number of streamlines in the anterior and long segments of the arcuate fasciculus, cingulum and uncinate--predominantly in the left hemisphere. Abnormalities were also evident in the anterior portions of the corpus callosum connecting left and right frontal lobes. The degree of microstructural alteration of the arcuate and uncinate fasciculi was associated with severity of symptoms in language and social reciprocity in childhood. Our results indicated that autism spectrum disorder is a developmental condition associated with abnormal connectivity of the frontal lobes. Furthermore our findings showed that male adults with autism spectrum disorder have regional differences in brain anatomy, which correlate with specific aspects of autistic symptoms. Overall these results suggest that autism spectrum disorder is a condition linked to aberrant developmental trajectories of the frontal networks that persist in adult life.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/metabolismo , Lobo Frontal/metabolismo , Rede Nervosa/metabolismo , Substância Branca/metabolismo , Adolescente , Adulto , Estudos Transversais , Imagem de Tensor de Difusão/métodos , Lobo Frontal/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/patologia , Substância Branca/patologia , Adulto Jovem
9.
Neuroimage ; 142: 55-66, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27417345

RESUMO

Functional magnetic resonance imaging (fMRI) research is routinely criticized for being statistically underpowered due to characteristically small sample sizes and much larger sample sizes are being increasingly recommended. Additionally, various sources of artifact inherent in fMRI data can have detrimental impact on effect size estimates and statistical power. Here we show how specific removal of non-BOLD artifacts can improve effect size estimation and statistical power in task-fMRI contexts, with particular application to the social-cognitive domain of mentalizing/theory of mind. Non-BOLD variability identification and removal is achieved in a biophysical and statistically principled manner by combining multi-echo fMRI acquisition and independent components analysis (ME-ICA). Without smoothing, group-level effect size estimates on two different mentalizing tasks were enhanced by ME-ICA at a median rate of 24% in regions canonically associated with mentalizing, while much more substantial boosts (40-149%) were observed in non-canonical cerebellar areas. Effect size boosting occurs via reduction of non-BOLD noise at the subject-level and consequent reductions in between-subject variance at the group-level. Smoothing can attenuate ME-ICA-related effect size improvements in certain circumstances. Power simulations demonstrate that ME-ICA-related effect size enhancements enable much higher-powered studies at traditional sample sizes. Cerebellar effects observed after applying ME-ICA may be unobservable with conventional imaging at traditional sample sizes. Thus, ME-ICA allows for principled design-agnostic non-BOLD artifact removal that can substantially improve effect size estimates and statistical power in task-fMRI contexts. ME-ICA could mitigate some issues regarding statistical power in fMRI studies and enable novel discovery of aspects of brain organization that are currently under-appreciated and not well understood.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Cerebelo/fisiologia , Interpretação Estatística de Dados , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Teoria da Mente/fisiologia , Adolescente , Encéfalo/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Feminino , Humanos , Masculino
10.
Brain ; 136(Pt 9): 2799-815, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23935125

RESUMO

In autism, heterogeneity is the rule rather than the exception. One obvious source of heterogeneity is biological sex. Since autism was first recognized, males with autism have disproportionately skewed research. Females with autism have thus been relatively overlooked, and have generally been assumed to have the same underlying neurobiology as males with autism. Growing evidence, however, suggests that this is an oversimplification that risks obscuring the biological base of autism. This study seeks to answer two questions about how autism is modulated by biological sex at the level of the brain: (i) is the neuroanatomy of autism different in males and females? and (ii) does the neuroanatomy of autism fit predictions from the 'extreme male brain' theory of autism, in males and/or in females? Neuroanatomical features derived from voxel-based morphometry were compared in a sample of equal-sized high-functioning male and female adults with and without autism (n = 120, n = 30/group). The first question was investigated using a 2 × 2 factorial design, and by spatial overlap analyses of the neuroanatomy of autism in males and females. The second question was tested through spatial overlap analyses of specific patterns predicted by the extreme male brain theory. We found that the neuroanatomy of autism differed between adult males and females, evidenced by minimal spatial overlap (not different from that occurred under random condition) in both grey and white matter, and substantially large white matter regions showing significant sex × diagnosis interactions in the 2 × 2 factorial design. These suggest that autism manifests differently by biological sex. Furthermore, atypical brain areas in females with autism substantially and non-randomly (P < 0.001) overlapped with areas that were sexually dimorphic in neurotypical controls, in both grey and white matter, suggesting neural 'masculinization'. This was not seen in males with autism. How differences in neuroanatomy relate to the similarities in cognition between males and females with autism remains to be understood. Future research should stratify by biological sex to reduce heterogeneity and to provide greater insight into the neurobiology of autism.


Assuntos
Transtorno Autístico/patologia , Transtorno Autístico/fisiopatologia , Encéfalo/patologia , Neurobiologia , Caracteres Sexuais , Adolescente , Adulto , Análise de Variância , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estatística como Assunto , Adulto Jovem
11.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693556

RESUMO

Autism presents with significant phenotypic and neuroanatomical heterogeneity, and neuroimaging studies of the thalamus, globus pallidus and striatum in autism have produced inconsistent and contradictory results. These structures are critical mediators of functions known to be atypical in autism, including sensory gating and motor function. We examined both volumetric and fine-grained localized shape differences in autism using a large (n=3145, 1045-1318 after strict quality control), cross-sectional dataset of T1-weighted structural MRI scans from 32 sites, including both males and females (assigned-at-birth). We investigated three potentially important sources of neuroanatomical heterogeneity: sex, age, and intelligence quotient (IQ), using a meta-analytic technique after strict quality control to minimize non-biological sources of variation. We observed no volumetric differences in the thalamus, globus pallidus, or striatum in autism. Rather, we identified a variety of localized shape differences in all three structures. Including age, but not sex or IQ, in the statistical model improved the fit for both the pallidum and striatum, but not for the thalamus. Age-centered shape analysis indicated a variety of age-dependent regional differences. Overall, our findings help confirm that the neurodevelopment of the striatum, globus pallidus and thalamus are atypical in autism, in a subtle location-dependent manner that is not reflected in overall structure volumes, and that is highly non-uniform across the lifespan.

12.
Mol Autism ; 13(1): 26, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705965

RESUMO

BACKGROUND: Many empirical studies suggest that higher maternal age increases the likelihood of having an autistic child. However, little is known about factors that may explain this relationship or if higher maternal age is related to the number of autistic-like traits in offspring. One possibility is that mothers who have a higher number of autistic-like traits, including greater challenges performing mentalizing skills, are delayed in finding a partner. The goal of our study is to assess the relationship between maternal age, mentalizing skills and autistic-like traits as independent predictors of the number of autistic-like traits in offspring. METHODS: In a population-based study in the Netherlands, information on maternal age was collected during pre- and perinatal enrolment. Maternal mentalizing skills and autistic-like traits were assessed using the Reading the Mind in the Eyes Test and the Autism Spectrum Quotient, respectively. Autistic-like traits in children were assessed with the Social Responsiveness Scale. A total of 5718 mother/child dyads had complete data (Magechild = 13.5 years; 50.2% girls). RESULTS: The relationship between maternal age and autistic-like traits in offspring best fits a U-shaped curve. Furthermore, higher levels of autistic features in mothers are linked to higher levels of autistic-like traits in their children. Lower mentalizing performance in mothers is linked to higher levels of autistic-like traits in their children. LIMITATIONS: We were able to collect data on both autistic-like traits and the mentalizing skills test in a large population of mothers, but we did not collect these data in a large number of the fathers. CONCLUSIONS: The relationships between older and younger mothers may have comparable underlying mechanisms, but it is also possible that the tails of the U-shaped curve are influenced by disparate mechanisms.


Assuntos
Transtorno Autístico , Mentalização , Transtorno Autístico/epidemiologia , Criança , Feminino , Humanos , Masculino , Idade Materna , Mães , Países Baixos/epidemiologia , Gravidez
13.
Handb Clin Neurol ; 175: 283-297, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33008532

RESUMO

Autism is a heterogenous set of early-onset neurodevelopmental conditions that are more prevalent in males than in females. Due to the high phenotypic, neurobiological, developmental, and etiological heterogeneity in the autism spectrum, recent research programs are increasingly exploring whether sex- and gender-related factors could be helpful markers to clarify the heterogeneity in autism and work toward a personalized approach to intervention and support. In this chapter, we summarize recent clinical and neuroscientific research addressing sex/gender influences in autism and explore how sex/gender-based investigations shed light on similar or different underlying neurodevelopmental mechanisms of autism by sex/gender. We review evidence that may help to explain some of the underlying sex-related biological mechanisms associated with autism, including genetics and the effects of sex steroid hormones in the prenatal environment. We conclude that current research points toward coexisting quantitative and, perhaps more evidently, qualitative sex/gender-modulation effects in autism across multiple neurobiological aspects. However, converging findings of specific neurobiological presentations and sex/gender-informed mechanisms cutting across the many subgroups within the autism spectrum are still lacking. Future research should use big data approaches and new stratification methods to decompose sex/gender-related heterogeneity in autism and work toward personalized, sex/gender-informed intervention and support for autistic people.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Neurologia , Psiquiatria , Transtorno do Espectro Autista/epidemiologia , Transtorno Autístico/epidemiologia , Feminino , Humanos , Masculino , Fatores Sexuais
14.
Mol Autism ; 10: 44, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31867091

RESUMO

Introduction: The universal right to education for people with disabilities has been highlighted by the Universal Declaration on Human Rights and the Convention on the Rights of Persons with Disabilities. In this paper, we mapped policies addressing the right to education and special education needs of autistic children in Denmark, Sweden, and Finland. Methods: A policy path analysis was carried out using a scoping review as an underlying framework for data gathering. Policy mapping was performed independently by both lead authors to increase reliability. Results and discussion: The values of the Universal Declaration of Human Rights and the Convention on the Rights of Persons with Disabilities have been closely translated into the respective education systems of the countries under study, offering special education needs services and support in mainstream education with the aim of including as many children into mainstream education as possible. Even though the education systems are comparable, the approaches between the countries under study are slightly different. Denmark and Sweden have passed several policies specifically geared towards special education needs, while Finland incorporates this more in general education policy. Conclusion: All countries under study have incorporated the values of the Universal Declaration of Human Rights and the Convention on the Rights of Persons with Disabilities in their respective education systems while emphasising the need to include as many children in the mainstream system as possible.


Assuntos
Transtorno Autístico/epidemiologia , Educação , União Europeia , Direitos Humanos , Políticas , Bases de Dados como Assunto , Dinamarca/epidemiologia , Finlândia/epidemiologia , Humanos , Suécia/epidemiologia
15.
PLoS One ; 13(8): e0202336, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30161146

RESUMO

INTRODUCTION: Autistic people may have different educational needs that need to be met to allow them to develop their full potential. Education and disability policies remain within the competence of EU Member States, with current educational standards and provisions for autistic people implemented locally. This scoping review aims to map EU and national special education policies with the goal of scoping the level of fulfilment of the right to education of autistic people. METHODS: Four EU countries (United Kingdom, France, Poland and Spain) were included in this scoping review study. Governmental policies in the field of education, special education needs and disability law were included. Path dependency framework was used for data analysis; a net of inter-dependencies between international, EU and national policies was created. RESULTS AND DISCUSSION: Each country created policies where the right to free education without discrimination is provided. Poland does not have an autism specific strategy, whereas the United Kingdom, France and Spain have policies specifically designed for autistic individuals. Within the United Kingdom, all countries created different autism plans, nevertheless all aim to reach the same goal-inclusive education for autistic children that leads to the development of their full potential. CONCLUSION: Policy-making across Europe in the field of education has been changing through the years in favour of autistic people. Today their rights are noticed and considered, but there is still room for improvement. Results showed that approaches and policies vastly differ between countries, more Member States should be analysed in a similar manner to gain a broader and clearer view with a special focus on disability rights in Central and Eastern Europe.


Assuntos
Transtorno do Espectro Autista , Educação/legislação & jurisprudência , Políticas , Criança , Comparação Transcultural , Crianças com Deficiência/legislação & jurisprudência , França , Humanos , Polônia , Espanha , Reino Unido
16.
JAMA Psychiatry ; 74(4): 329-338, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28196230

RESUMO

Importance: Autism spectrum disorder (ASD) is 2 to 5 times more common in male individuals than in female individuals. While the male preponderant prevalence of ASD might partially be explained by sex differences in clinical symptoms, etiological models suggest that the biological male phenotype carries a higher intrinsic risk for ASD than the female phenotype. To our knowledge, this hypothesis has never been tested directly, and the neurobiological mechanisms that modulate ASD risk in male individuals and female individuals remain elusive. Objectives: To examine the probability of ASD as a function of normative sex-related phenotypic diversity in brain structure and to identify the patterns of sex-related neuroanatomical variability associated with low or high probability of ASD. Design, Setting, and Participants: This study examined a cross-sectional sample of 98 right-handed, high-functioning adults with ASD and 98 matched neurotypical control individuals aged 18 to 42 years. A multivariate probabilistic classification approach was used to develop a predictive model of biological sex based on cortical thickness measures assessed via magnetic resonance imaging in neurotypical controls. This normative model was subsequently applied to individuals with ASD. The study dates were June 2005 to October 2009, and this analysis was conducted between June 2015 and July 2016. Main Outcomes and Measures: Sample and population ASD probability estimates as a function of normative sex-related diversity in brain structure, as well as neuroanatomical patterns associated with low or high ASD probability in male individuals and female individuals. Results: Among the 98 individuals with ASD, 49 were male and 49 female, with a mean (SD) age of 26.88 (7.18) years. Among the 98 controls, 51 were male and 47 female, with a mean (SD) age of 27.39 (6.44) years. The sample probability of ASD increased significantly with predictive probabilities for the male neuroanatomical brain phenotype. For example, biological female individuals with a more male-typic pattern of brain anatomy were significantly (ie, 3 times) more likely to have ASD than biological female individuals with a characteristically female brain phenotype (P = .72 vs .24, respectively; χ21 = 20.26; P < .001; difference in P values, 0.48; 95% CI, 0.29-0.68). This finding translates to an estimated variability in population prevalence from 0.2% to 1.3%, respectively. Moreover, the patterns of neuroanatomical variability carrying low or high ASD probability were sex specific (eg, in inferior temporal regions, where ASD has different neurobiological underpinnings in male individuals and female individuals). Conclusions and Relevance: These findings highlight the need for considering normative sex-related phenotypic diversity when determining an individual's risk for ASD and provide important novel insights into the neurobiological mechanisms mediating sex differences in ASD prevalence.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Fenótipo , Caracteres Sexuais , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/psicologia , Estudos de Casos e Controles , Estudos Transversais , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiopatologia , Humanos , Masculino , Modelos Estatísticos , Análise Multivariada , Valores de Referência , Fatores de Risco , Substância Branca/diagnóstico por imagem , Substância Branca/fisiopatologia , Adulto Jovem
17.
Sci Rep ; 6: 35333, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752054

RESUMO

Individuals affected by autism spectrum conditions (ASC) are considerably heterogeneous. Novel approaches are needed to parse this heterogeneity to enhance precision in clinical and translational research. Applying a clustering approach taken from genomics and systems biology on two large independent cognitive datasets of adults with and without ASC (n = 694; n = 249), we find replicable evidence for 5 discrete ASC subgroups that are highly differentiated in item-level performance on an explicit mentalizing task tapping ability to read complex emotion and mental states from the eye region of the face (Reading the Mind in the Eyes Test; RMET). Three subgroups comprising 45-62% of ASC adults show evidence for large impairments (Cohen's d = -1.03 to -11.21), while other subgroups are effectively unimpaired. These findings delineate robust natural subdivisions within the ASC population that may allow for more individualized inferences and accelerate research towards precision medicine goals.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Cognição/fisiologia , Adolescente , Adulto , Transtorno do Espectro Autista/classificação , Emoções/fisiologia , Feminino , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Leitura , Biologia de Sistemas/métodos , Adulto Jovem
18.
Neurosci Biobehav Rev ; 39: 34-50, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24374381

RESUMO

The prevalence, age of onset, and symptomatology of many neuropsychiatric conditions differ between males and females. To understand the causes and consequences of sex differences it is important to establish where they occur in the human brain. We report the first meta-analysis of typical sex differences on global brain volume, a descriptive account of the breakdown of studies of each compartmental volume by six age categories, and whole-brain voxel-wise meta-analyses on brain volume and density. Gaussian-process regression coordinate-based meta-analysis was used to examine sex differences in voxel-based regional volume and density. On average, males have larger total brain volumes than females. Examination of the breakdown of studies providing total volumes by age categories indicated a bias towards the 18-59 year-old category. Regional sex differences in volume and tissue density include the amygdala, hippocampus and insula, areas known to be implicated in sex-biased neuropsychiatric conditions. Together, these results suggest candidate regions for investigating the asymmetric effect that sex has on the developing brain, and for understanding sex-biased neurological and psychiatric conditions.


Assuntos
Encéfalo/anatomia & histologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Adulto Jovem
19.
PLoS One ; 7(10): e47198, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23094036

RESUMO

The male bias in autism spectrum conditions (ASC) has led to females with ASC being under-researched. This lack of attention to females could hide variability due to sex that may explain some of the heterogeneity within ASC. In this study we investigate four key cognitive domains (mentalizing and emotion perception, executive function, perceptual attention to detail, and motor function) in ASC, to test for similarities and differences between males and females with and without ASC (n = 128 adults; n = 32 per group). In the mentalizing and facial emotion perception domain, males and females with ASC showed similar deficits compared to neurotypical controls. However, in attention to detail and dexterity involving executive function, although males with ASC showed poorer performance relative to neurotypical males, females with ASC performed comparably to neurotypical females. We conclude that performance in the social-cognitive domain is equally impaired in male and female adults with ASC. However, in specific non-social cognitive domains, performance within ASC depends on sex. This suggests that in specific domains, cognitive profiles in ASC are modulated by sex.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/psicologia , Cognição , Função Executiva , Adolescente , Adulto , Atenção , Transtorno Autístico/fisiopatologia , Estudos de Casos e Controles , Inteligência Emocional/genética , Emoções , Feminino , Heterogeneidade Genética , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora/genética , Fatores Sexuais , Comportamento Social , Teoria da Mente
20.
PLoS One ; 6(6): e20835, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21695147

RESUMO

Autism spectrum conditions (ASC) affect more males than females in the general population. However, within ASC it is unclear if there are phenotypic sex differences. Testing for similarities and differences between the sexes is important not only for clinical assessment but also has implications for theories of typical sex differences and of autism. Using cognitive and behavioral measures, we investigated similarities and differences between the sexes in age- and IQ-matched adults with ASC (high-functioning autism or Asperger syndrome). Of the 83 (45 males and 38 females) participants, 62 (33 males and 29 females) met Autism Diagnostic Interview-Revised (ADI-R) cut-off criteria for autism in childhood and were included in all subsequent analyses. The severity of childhood core autism symptoms did not differ between the sexes. Males and females also did not differ in self-reported empathy, systemizing, anxiety, depression, and obsessive-compulsive traits/symptoms or mentalizing performance. However, adult females with ASC showed more lifetime sensory symptoms (p = 0.036), fewer current socio-communication difficulties (p = 0.001), and more self-reported autistic traits (p = 0.012) than males. In addition, females with ASC who also had developmental language delay had lower current performance IQ than those without developmental language delay (p<0.001), a pattern not seen in males. The absence of typical sex differences in empathizing-systemizing profiles within the autism spectrum confirms a prediction from the extreme male brain theory. Behavioral sex differences within ASC may also reflect different developmental mechanisms between males and females with ASC. We discuss the importance of the superficially better socio-communication ability in adult females with ASC in terms of why females with ASC may more often go under-recognized, and receive their diagnosis later, than males.


Assuntos
Comportamento/fisiologia , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Caracteres Sexuais , Adolescente , Adulto , Criança , Transtornos Globais do Desenvolvimento Infantil/complicações , Cognição/fisiologia , Feminino , Humanos , Testes de Inteligência , Transtornos do Desenvolvimento da Linguagem/complicações , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA