Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Genet ; 17(2): e1009269, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33630855

RESUMO

Malaria remains a major public health problem in many countries. Unlike influenza and HIV, where diversity in immunodominant surface antigens is understood geographically to inform disease surveillance, relatively little is known about the global population structure of PfEMP1, the major variant surface antigen of the malaria parasite Plasmodium falciparum. The complexity of the var multigene family that encodes PfEMP1 and that diversifies by recombination, has so far precluded its use in malaria surveillance. Recent studies have demonstrated that cost-effective deep sequencing of the region of var genes encoding the PfEMP1 DBLα domain and subsequent classification of within host sequences at 96% identity to define unique DBLα types, can reveal structure and strain dynamics within countries. However, to date there has not been a comprehensive comparison of these DBLα types between countries. By leveraging a bioinformatic approach (jumping hidden Markov model) designed specifically for the analysis of recombination within var genes and applying it to a dataset of DBLα types from 10 countries, we are able to describe population structure of DBLα types at the global scale. The sensitivity of the approach allows for the comparison of the global dataset to ape samples of Plasmodium Laverania species. Our analyses show that the evolution of the parasite population emerging out of Africa underlies current patterns of DBLα type diversity. Most importantly, we can distinguish geographic population structure within Africa between Gabon and Ghana in West Africa and Uganda in East Africa. Our evolutionary findings have translational implications in the context of globalization. Firstly, DBLα type diversity can provide a simple diagnostic framework for geographic surveillance of the rapidly evolving transmission dynamics of P. falciparum. It can also inform efforts to understand the presence or absence of global, regional and local population immunity to major surface antigen variants. Additionally, we identify a number of highly conserved DBLα types that are present globally that may be of biological significance and warrant further characterization.


Assuntos
Antígenos de Protozoários/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Variação Antigênica , Evolução Molecular , Gabão , Gana , Humanos , Malária Falciparum/epidemiologia , Cadeias de Markov , Modelos Estatísticos , Domínios Proteicos , Proteínas de Protozoários/metabolismo , Uganda
2.
Front Pharmacol ; 14: 1100542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342590

RESUMO

High prevalence of parasitic or bacterial infectious diseases in some world areas is due to multiple reasons, including a lack of an appropriate health policy, challenging logistics and poverty. The support to research and development of new medicines to fight infectious diseases is one of the sustainable development goals promoted by World Health Organization (WHO). In this sense, the traditional medicinal knowledge substantiated by ethnopharmacology is a valuable starting point for drug discovery. This work aims at the scientific validation of the traditional use of Piper species ("Cordoncillos") as firsthand anti-infectious medicines. For this purpose, we adapted a computational statistical model to correlate the LCMS chemical profiles of 54 extracts from 19 Piper species to their corresponding anti-infectious assay results based on 37 microbial or parasites strains. We mainly identified two groups of bioactive compounds (called features as they are considered at the analytical level and are not formally isolated). Group 1 is composed of 11 features being highly correlated to an inhibiting activity on 21 bacteria (principally Gram-positive strains), one fungus (C. albicans), and one parasite (Trypanosoma brucei gambiense). The group 2 is composed of 9 features having a clear selectivity on Leishmania (all strains, both axenic and intramacrophagic). Bioactive features in group 1 were identified principally in the extracts of Piper strigosum and P. xanthostachyum. In group 2, bioactive features were distributed in the extracts of 14 Piper species. This multiplexed approach provided a broad picture of the metabolome as well as a map of compounds putatively associated to bioactivity. To our knowledge, the implementation of this type of metabolomics tools aimed at identifying bioactive compounds has not been used so far.

3.
Parasitol Res ; 110(4): 1381-92, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21922239

RESUMO

Extracts (34) from eight plant species of the Peruvian Amazonia currently used in traditional Peruvian medicine, mostly as antileishmanial remedies and also as painkiller, antiseptic, antipyretic, anti-inflamatory, antiflu, astringent, diuretic, antipoison, anticancerous, antiparasitic, insecticidal, or healing agents, have been tested for their antileishmanial, antitrypanosomal, and cytotoxic activity. Plant species were selected based on interviews conducted with residents of rural areas. The different plant parts were dried, powdered, and extracted by maceration with different solvents (hexane, chloroform, and 70% ethanol-water). These extracts were tested on promastigote forms of Leishmania infantum strain PB75, epimastigote forms of Trypanosoma cruzi strain Y, and the mammalian CHO cell line. Parasite viability and nonspecific cytotoxicity were analyzed by a modified MTT colorimetric assay method. The isolation and identification of pure compounds from selected extracts were performed by column chromatography, gas chromatography mass spectrometry (GC-MS; mixtures), spectroscopic techniques [MS, infrared (IR), ultraviolet (UV)], and mono and two-dimensional (1)H and (13)C nuclear magnetic resonance (NMR; COSY, HSQC, NOESY) experiments. Chondodendron tomentosum bark and Cedrela odorata were the most active extracts against Leishmania, while C. odorata and Aristoloquia pilosa were the most active against Trypanosoma, followed by Tabebuia serratifolia, Tradescantia zebrina, and Zamia ulei. Six compounds and two mixtures were isolated from Z. ulei [cycasin (1)], T. serratifolia {mixtures 1-2, and naphthoquinones 2-acetyl-4H,9H-naphtho[2,3-b]furan-4,9-dione (2) and 2-(1-hydroxyethyl)-4H,9H-naphtho[2,3-b]furan-4,9-dione (3)}, and C. tomentosum [chondrocurine (4); (S,S')-12-O-methyl(+)-curine (5); and cycleanine (6)]. Four compounds and the two mixtures exhibited significant activity.


Assuntos
Antiprotozoários/farmacologia , Citotoxinas/isolamento & purificação , Etnofarmacologia/métodos , Extratos Vegetais/farmacologia , Animais , Células CHO , Cricetinae , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hexanos , Leishmania infantum/efeitos dos fármacos , Medicina Tradicional , Peru , Casca de Planta/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Caules de Planta/química , Trypanosoma cruzi/efeitos dos fármacos
4.
Plants (Basel) ; 11(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35890427

RESUMO

The chemical composition of essential oils (EOs) from ten Peruvian Piper species (Piper coruscans, Pc; P. tuberculatum, Pt; P. casapiense, Pcs; P. obliquum, Po; P. dumosum, Pd; P. anonifolium, Pa; P. reticulatum, Pr; P. soledadense, Ps; P. sancti-felicis, Psf and P. mituense, Pm) has been studied, along with their antifungal and phytotoxic activities. These EOs contained ß-bisabolene/nerolidol (Pc), ß-bisabolene/δ-cadinene/caryophyllene (Pt), caryophyllene oxide (Pcs), bicyclogermacrene/10-epi-Elemol (Po), bicyclogermacrene/germacrene-D/apiol (Pd), caryophyllene/germacrene-D (Pa), germacrene-D (Pr), limonene/apiol (Ps), apiol (Psf), and apiol/bicyclogermacrene (Pm) as major components, and some are described here for the first time (Ps, Pcs, Pm). A composition-based dendrogram of these Piper species showed four major groups (G1: Pc and Pt, G2: Pcs, Po, Pd, Pa, and Pr, G3: Ps, and G4: Psf and Pm). The spore germination effects (Aspergillus niger, Botrytis cinerea, and Alternaria alternate) and phytotoxicity (Lolium perenne and Lactuca sativa) of these EOs were studied. Most of these Piper essential oils showed important activity against phytopathogenic fungi (except G1), especially against B. cinerea. Similarly, most of the essential oils were phytotoxic against L. perenne (except G1), with P. sancti-felicis (G4), P. casapiense (G2), and P. reticulatum (G2) being the most effective. Caryophyllene oxide, ß-caryophyllene, ß-pinene, limonene, α-humulene, and apiol were evaluated against B. cinerea, with the most effective compounds being ß-pinene, apiol, and limonene. This work demonstrates the species-dependent potential of essential oils from Peruvian Piper species as fungicidal and herbicidal agents.

5.
Z Naturforsch C J Biosci ; 66(5-6): 225-34, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21812339

RESUMO

Five oxindole alkaloids, three plumerane-type alkaloids, subtype haplophitine, and one aspidospermatane-type alkaloid, subtype tubotaiwine, were isolated from the medicinal plants Aspidosperma rigidum and A. schultesii. One compound was identified as the transoid conformer of 18-oxo-O-methylaspidoalbine which was not previously described. The antiparasitic activity of all compounds against Trypanosoma cruzi and Leishmania infantum and their non-specific cytotoxicity against mammalian cells were also determined.


Assuntos
Antiparasitários/farmacologia , Aspidosperma/química , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Espectroscopia de Ressonância Magnética , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
6.
J Ethnopharmacol ; 264: 113262, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32818574

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the Peruvian Amazon as in the tropical countries of South America, the use of medicinal Piper species (cordoncillos) is common practice, particularly against symptoms of infection by protozoal parasites. However, there is few documented information about the practical aspects of their use and few scientific validation. The starting point of this work was a set of interviews of people living in six rural communities from the Peruvian Amazon (Alto Amazonas Province) about their uses of plants from Piper genus: one community of Amerindian native people (Shawi community) and five communities of mestizos. Infections caused by parasitic protozoa take a huge toll on public health in the Amazonian communities, who partly fight it using traditional remedies. Validation of these traditional practices contributes to public health care efficiency and may help to identify new antiprotozoal compounds. AIMS OF STUDY: To record and validate the use of medicinal Piper species by rural people of Alto Amazonas Province (Peru) and annotate active compounds using a correlation study and a data mining approach. MATERIALS AND METHODS: Rural communities were interviewed about traditional medication against parasite infections with medicinal Piper species. Ethnopharmacological surveys were undertaken in five mestizo villages, namely: Nueva Arica, Shucushuyacu, Parinari, Lagunas and Esperanza, and one Shawi community (Balsapuerto village). All communities belong to the Alto Amazonas Province (Loreto region, Peru). Seventeen Piper species were collected according to their traditional use for the treatment of parasitic diseases, 35 extracts (leaves or leaves and stems) were tested in vitro on P. falciparum (3D7 chloroquine-sensitive strain and W2 chloroquine-resistant strain), Leishmania donovani LV9 strain and Trypanosoma brucei gambiense. Assessments were performed on HUVEC cells and RAW 264.7 macrophages. The annotation of active compounds was realized by metabolomic analysis and molecular networking approach. RESULTS: Nine extracts were active (IC50 ≤ 10 µg/mL) on 3D7 P. falciparum and only one on W2 P. falciparum, six on L. donovani (axenic and intramacrophagic amastigotes) and seven on Trypanosoma brucei gambiense. Only one extract was active on all three parasites (P. lineatum). After metabolomic analyses and annotation of compounds active on Leishmania, P. strigosum and P. pseudoarboreum were considered as potential sources of leishmanicidal compounds. CONCLUSIONS: This ethnopharmacological study and the associated in vitro bioassays corroborated the relevance of use of Piper species in the Amazonian traditional medicine, especially in Peru. A series of Piper species with few previously available phytochemical data have good antiprotozoal activity and could be a starting point for subsequent promising work. Metabolomic approach appears to be a smart, quick but still limited methodology to identify compounds with high probability of biological activity.


Assuntos
Antiprotozoários/metabolismo , Etnofarmacologia/métodos , Medicina Tradicional/métodos , Metabolômica/métodos , Piper/metabolismo , Extratos Vegetais/metabolismo , Animais , Antimaláricos/isolamento & purificação , Antimaláricos/metabolismo , Antimaláricos/uso terapêutico , Antiprotozoários/isolamento & purificação , Antiprotozoários/uso terapêutico , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/metabolismo , Mesocricetus , Camundongos , Peru/etnologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Células RAW 264.7 , Inquéritos e Questionários
7.
J Agric Food Chem ; 53(6): 1921-6, 2005 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-15769114

RESUMO

Three known Cinchona alkaloids of the quinine type, quinine (1), cupreine (2), cinchonine (3), and the possible artifact cinchonine-HCl (3-HCl), along with two new ones, acetylcupreine (4) and N-ethylquinine (5), have been isolated from the bark of Remijia peruviana (Rubiaceae). Their stereochemical structures were established by high resolution NMR spectroscopy. Alkaloids 2-4 had antifeedant effects on Leptinotarsa decemlineata with varying potencies. Compound 4 was cytotoxic to both insect Sf9 and mammalian CHO cells after 48 h of incubation, while 3-HCl had stronger and selective cytotoxicity to Sf9. Quinine 1 had a moderate to low effect on Trypanosoma cruzi. Tumoral cells were also affected by these alkaloids, with 4 and 3-HCl being the most cytotoxic to all the cell lines tested. Overall, the 8R, 9S configurations, as in 3 and 3-HCl, as well as the C-6'acetylated alkaloid 4, with an 8S, 9R configuration, showed stronger biological effects.


Assuntos
Alcaloides de Cinchona/análise , Rubiaceae/química , Animais , Antineoplásicos , Células CHO , Morte Celular/efeitos dos fármacos , Alcaloides de Cinchona/química , Alcaloides de Cinchona/farmacologia , Cricetinae , Humanos , Inseticidas , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular , Casca de Planta/química , Spodoptera , Trypanosoma cruzi/efeitos dos fármacos , Células Tumorais Cultivadas
8.
Nat Prod Commun ; 9(8): 1075-80, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25233577

RESUMO

Twenty-three indole alkaloids were isolated from Aspidosperma desmanthum and A. spruceanum. Alkaloids 1-4 were isolated from the leaves, 5-8 from the stem bark and 9-15 from the root bark of A. desmanthum. Alkaloids 5, 11, 16, 17 and 19 were isolated from the stem bark, 18 and 20-22 from the root bark and 23 from the flowers of A. spruceanum. Compounds 4, 14, and 15 have not been previously reported as natural products while 16 and 20 have been isolated for the first time from the genus Aspidosperma. Their structures were determined by spectroscopic techniques including 1D and 2D NMR experiments (COSY, NOESY, HSQC, HMBC). The antiparasitic activity of these compounds was tested against Trypanosoma cruzi and Leishmania infantum and their non-specific cytotoxicity on mammalian cells. The most active compounds were 10, 12, 13, and 14 from A. desmanthum, and 19, 21 and 22 from A. spruceanum. Aspidolimine (10) aspidocarpine (12) and tubotaiwine (21) showed selective activity against L. infantum.


Assuntos
Antiparasitários , Aspidosperma , Extratos Vegetais , Alcaloides de Triptamina e Secologanina , Animais , Humanos , Antiparasitários/química , Antiparasitários/isolamento & purificação , Antiparasitários/farmacologia , Aspidosperma/química , Brasil , Linhagem Celular , Células CHO , Cricetulus , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/parasitologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Triptamina e Secologanina/isolamento & purificação , Alcaloides de Triptamina e Secologanina/farmacologia
9.
J Nat Prod ; 65(4): 496-9, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11975487

RESUMO

The structures of four new hetisine-type diterpenoids, 9-deoxyglanduline (1), glandulosine (2), 11,13-O-diacetylglanduline (3), and 9-O-acetylglanduline (4), isolated from Consolida glandulosa, were determined by two-dimensional NMR techniques. All the structures of these compounds were substantiated by a single-crystal X-ray analysis performed on compound 3.


Assuntos
Alcaloides/isolamento & purificação , Diterpenos/isolamento & purificação , Plantas Medicinais/química , Ranunculaceae/química , Alcaloides/química , Cristalografia por Raios X , Diterpenos/química , Conformação Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Turquia
10.
J Chem Ecol ; 30(7): 1393-408, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15503527

RESUMO

We have tested the insect antifeedant and toxic activity of 43 norditerpenoid alkaloids on Spodoptera littoralis and Leptinotarsa decemlineata including eserine (physostigmine), anabasine, and atropine. Antifeedant effects of the test compounds were structure- and species-dependent. The most active antifeedants to L. decemlineata were 1,14-diacetylcardiopetaline (9) and 18-hydroxy- 14-O-methylgadesine (33), followed by 8-O-methylconsolarine (12), 14-O-acetyldelectinine (27), karakoline (7), cardiopetaline (8), 18-O-demethylpubescenine (13), 14-O-acetyldeltatsine (18), takaosamine (21), ajadine (24), and 8-O-methylcolumbianine (6) (EC50 < 1 microg/cm2). This insect showed a moderate response to atropine. S. littoralis had the strongest antifeedant response to 24, 18, 14-O-acetyldelcosine (19), and delphatine (29) (EC50 < 3 microg/cm2). None of the model substances affected the feeding behavior of this insect. The most toxic compound to L. decemlineata was aconitine (1), followed by cardiopetalidine (10) (% mortality > 60), 14-deacetylpubescenine (14), 18-O-benzoyl-18-O-demethyl-14-O-deacetylpubescenine (17), 14-O-acetyldelcosine (19), 14-deacetylajadine (25) and methyllycaconitine (30) (% mortality > 45). Orally injected S. littoralis larvae were negatively affected by 1, cardiopetaline (8), 10, 1,14-O-acetylcardiopetalidina (11), 12, 14, 1,18-O-diacetyl-19-oxo-gigactonine (41), olivimine (43), and eserine in varying degrees. Their antifeedant or insecticidal potencies did not parallel their reported nAChR binding activity, but did correlate with the agonist/antagonist insecticidal/antifeedant model proposed for nicotininc insecticides. A few compounds [14, tuguaconitine (38), 14-demethyldelboxine (40), 19, dehydrodelsoline (36), 18-O-demethylpubescenine (13), 41, 9, and delcosine (23)] had selective cytotoxic effects to ward insect-derived Sf9 cells. None were cytotoxic to mammalian CHO cells and none increased Trypanosoma cruzi mortality. The selective cytotoxic effects of some structures indicate that they can act on biological targets other than neuroreceptors.


Assuntos
Alcaloides/farmacologia , Besouros/efeitos dos fármacos , Diterpenos/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Inseticidas/farmacologia , Spodoptera/efeitos dos fármacos , Alcaloides/antagonistas & inibidores , Alcaloides/toxicidade , Anabasina/farmacologia , Animais , Atropina/farmacologia , Células CHO , Linhagem Celular , Besouros/fisiologia , Cricetinae , Diterpenos/antagonistas & inibidores , Diterpenos/toxicidade , Controle de Insetos/métodos , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Larva/fisiologia , Fisostigmina/farmacologia , Spodoptera/fisiologia , Relação Estrutura-Atividade , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA