Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
J Exp Biol ; 222(Pt 14)2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31239296

RESUMO

Phenotypic flexibility across the annual cycle allows birds to adjust to fluctuating ecological demands. Varying energetic demands associated with time of year have been demonstrated to drive metabolic and muscle plasticity in birds, but it remains unclear what molecular mechanisms control this flexibility. We sampled gray catbirds at five stages across their annual cycle: tropical overwintering (January), northward spring (late) migration (early May), breeding (mid June), the fall pre-migratory period (early August) and southward fall (early) migration (end September). Across the catbird's annual cycle, cold-induced metabolic rate (V̇O2summit) was highest during migration and lowest during tropical wintering. Flight muscles exhibited significant hypertrophy and/or hyperplasia during fall migratory periods compared with breeding and the fall pre-migratory period. Changes in heart mass were driven by the tropical wintering stage, when heart mass was lowest. Mitochondrial content of the heart and pectoralis remained constant across the annual cycle as quantified by aerobic enzyme activities (CS, CCO), as did lipid catabolic capacity (HOAD). In the pectoralis, transcription factors PPARα, PPARδ and ERRß, coactivators PGC-1α and ß, and genes encoding proteins associated with fat uptake (FABPpm, Plin3) were unexpectedly upregulated in the tropical wintering stage, whereas those involved in fatty acid oxidation (ATGL, LPL, MCAD) were downregulated, suggesting a preference for fat storage over utilization. Transcription factors and coactivators were synchronously upregulated during pre-migration and fall migration periods in the pectoralis but not the heart, suggesting that these pathways are important in preparation for and during early migration to initiate changes to phenotypes that facilitate long-distance migration.


Assuntos
Migração Animal , Proteínas Aviárias/genética , Expressão Gênica , Coração/fisiologia , Músculos Peitorais/fisiologia , Aves Canoras/genética , Animais , Proteínas Aviárias/metabolismo , Metabolismo Basal , Tamanho do Órgão , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Estações do Ano , Aves Canoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
J Exp Biol ; 219(Pt 21): 3391-3398, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591312

RESUMO

The annual cycle of a migrating bird involves metabolically distinct stages of substantial fatty acid storage and periods of increased fatty acid mobilization and utilization, and thus requires a great deal of phenotypic flexibility. Specific mechanisms directing stage transitions of lipid metabolism in migrants are largely unknown. This study characterized the role of the PPARs (peroxisome proliferator-activated receptors) in regulating migratory adiposity of the gray catbird (Dumetella carolinensis). Catbirds increased adipose storage during spring and autumn migration and showed increased rates of basal lipolysis during migration and tropical overwintering. Expression of the PPAR target genes involved in fat uptake and storage, FABPpm and PLIN3, increased during pre-migratory fattening. We found significant correlation between PPARγ and target gene expression in adipose but little evidence that PPARα expression levels drive metabolic regulation in liver during the migratory cycle.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Estágios do Ciclo de Vida , Metabolismo dos Lipídeos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Tecido Adiposo/metabolismo , Animais , Aves/genética , Composição Corporal , Peso Corporal , Regulação da Expressão Gênica , Glicerol/metabolismo , Lipólise , Fígado/anatomia & histologia , Tamanho do Órgão , Perilipina-1/genética , Perilipina-1/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estações do Ano , Especificidade da Espécie
3.
J Exp Biol ; 215(Pt 14): 2418-24, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22723481

RESUMO

Northern cardinals (Cardinalis cardinalis) are faced with energetically expensive seasonal challenges that must be met to ensure survival, including thermoregulation in winter and reproductive activities in summer. Contrary to predictions of life history theory that suggest breeding metabolic rate should be the apex of energetic effort, winter metabolism exceeds that during breeding in several temperate resident bird species. By examining whole-animal, tissue and cellular function, we ask whether seasonal acclimatization is accomplished by coordinated phenotypic plasticity of metabolic systems. We measured summit metabolism (V(O(2),sum)), daily energy expenditure (DEE) and muscle oxidative capacity under both winter (December to January) and breeding (May to June) conditions. We hypothesize that: (1) rates of energy utilization will be highest in the winter, contrary to predictions based on life history theory, and (2) acclimatization of metabolism will occur at multiple levels of organization such that birds operate with a similar metabolic ceiling during different seasons. We measured field metabolic rates using heart rate telemetry and report the first daily patterns in avian field metabolic rate. Patterns of daily energy use differed seasonally, primarily as birds maintain high metabolic rates throughout the winter daylight hours. We found that DEE and V(O(2),sum) were significantly greater and DEE occurred at a higher fraction of maximum metabolic capacity during winter, indicating an elevation of the metabolic ceiling. Surprisingly, there were no significant differences in mass or oxidative capacity of skeletal muscle. These data, highlighting the importance of examining energetic responses to seasonal challenges at multiple levels, clearly reject life history predictions that breeding is the primary energetic challenge for temperate zone residents. Further, they indicate that metabolic ceilings are seasonally flexible as metabolic effort during winter thermoregulation exceeds that of breeding.


Assuntos
Aclimatação/fisiologia , Metabolismo Basal/fisiologia , Aves/fisiologia , Metabolismo Energético/fisiologia , Estações do Ano , Animais , Aves/anatomia & histologia , Cruzamento , Feminino , Masculino , Músculo Esquelético/fisiologia , Oxirredução , Temperatura
4.
Integr Environ Assess Manag ; 7(3): 466-77, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21082667

RESUMO

This study assessed ambient waters in an urbanized area of the Delaware River, to determine whether river water samples exhibited chronic lethal or sublethal toxicity when measured in laboratory experiments. Toxicity was assessed at 16 fixed stations in the main-stem river and 29 stations in tributaries of the tidal Delaware River with salinities from 0 to 15 parts per 1000 (ppt) using Pimephales promelas, Americamysis bahia, Menidia beryllina, and Ceriodaphnia dubia in 7-d tests; Pseudokirchneriella subcapitata in a 96-h test; and Hyalella azteca in a 10-d water-only test. The toxicity tests measured organism survival, growth, and reproduction. Results from testing water samples collected in 4 different y indicated that the samples from sites tested in the main-stem of the Delaware River and from the majority of its tributaries did not produce chronic toxicity. The surveys identified tributaries that warrant further assessment for toxicity.


Assuntos
Monitoramento Ambiental/métodos , Rios/química , Poluentes Químicos da Água/toxicidade , Animais , Delaware , Salinidade , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA