Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Opt Express ; 24(11): 11828-38, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27410106

RESUMO

Flying insects are common vectors for transmission of pathogens and inflict significant harm to humans and agricultural production in many parts of the world. We present proof of principle for an optical system capable of highly specific vector control. This system utilizes a combination of optical sources, detectors, and sophisticated software to search, detect, and identify flying insects in real-time, with the capability of eradication using a lethal laser pulse. We present data on two insect species to show species distinction; Diaphorina citri, a vector of the causal agent of citrus greening disease, and Anopheles stephensi, a malaria vector.


Assuntos
Voo Animal , Insetos , Óptica e Fotônica , Animais , Anopheles , Citrus , Hemípteros , Controle de Insetos
2.
Sci Rep ; 14(1): 8174, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589427

RESUMO

Sustainable and effective means to control flying insect vectors are critically needed, especially with widespread insecticide resistance and global climate change. Understanding and controlling vectors requires accurate information about their movement and activity, which is often lacking. The Photonic Fence (PF) is an optical system that uses machine vision, infrared light, and lasers to identify, track, and interdict vectors in flight. The PF examines an insect's outline, flight speed, and other flight parameters and if these match those of a targeted vector species, then a low-power, retina-safe laser kills it. We report on proof-of-concept tests of a large, field-sized PF (30 mL × 3 mH) conducted with Aedes aegypti, a mosquito that transmits dangerous arboviruses, and Diaphorina citri, a psyllid which transmits the fatal huanglongbing disease of citrus. In tests with the laser engaged, < 1% and 3% of A. aegypti and D. citri, respectfully, were recovered versus a 38% and 19% recovery when the lacer was silenced. The PF tracked, but did not intercept the orchid bee, Euglossa dilemma. The system effectively intercepted flying vectors, but not bees, at a distance of 30 m, heralding the use of photonic energy, rather than chemicals, to control flying vectors.


Assuntos
Citrus , Hemípteros , Dispositivos Ópticos , Humanos , Animais , Mosquitos Vetores , Resistência a Inseticidas , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA