Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.482
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(5): 1206-1222.e16, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428395

RESUMO

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.


Assuntos
Bactérias , Trato Gastrointestinal , Metagenoma , Plasmídeos , Humanos , Bactérias/genética , Bacteroidetes/genética , Fezes/microbiologia , Plasmídeos/genética
2.
Nat Immunol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025963

RESUMO

Germinal centers (GCs) that form in mucosal sites are exposed to gut-derived factors that have the potential to influence homeostasis independent of antigen receptor-driven selective processes. The G-protein Gα13 confines B cells to the GC and limits the development of GC-derived lymphoma. We discovered that Gα13-deficiency fuels the GC reaction via increased mTORC1 signaling and Myc protein expression specifically in the mesenteric lymph node (mLN). The competitive advantage of Gα13-deficient GC B cells (GCBs) in mLN was not dependent on T cell help or gut microbiota. Instead, Gα13-deficient GCBs were selectively dependent on dietary nutrients likely due to greater access to gut lymphatics. Specifically, we found that diet-derived glutamine supported proliferation and Myc expression in Gα13-deficient GCBs in the mLN. Thus, GC confinement limits the effects of dietary glutamine on GC dynamics in mucosal tissues. Gα13 pathway mutations coopt these processes to promote the gut tropism of aggressive lymphoma.

3.
Cell ; 184(20): 5163-5178.e24, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34559985

RESUMO

Rift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection. RVFV Gn directly binds to specific Lrp1 clusters and is glycosylation independent. Exogenous addition of murine RAP domain 3 (mRAPD3) and anti-Lrp1 antibodies neutralizes RVFV infection in taxonomically diverse cell lines. Mice treated with mRAPD3 and infected with pathogenic RVFV are protected from disease and death. A mutant mRAPD3 that binds Lrp1 weakly failed to protect from RVFV infection. Together, these data support Lrp1 as a host entry factor for RVFV infection and define a new target to limit RVFV infections.


Assuntos
Interações Hospedeiro-Patógeno , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Vírus da Febre do Vale do Rift/fisiologia , Internalização do Vírus , Animais , Especificidade de Anticorpos/imunologia , Sequência de Bases , Encéfalo/patologia , Encéfalo/virologia , Sistemas CRISPR-Cas/genética , Membrana Celular/metabolismo , Células Cultivadas , Glicoproteínas/metabolismo , Glicosaminoglicanos/metabolismo , Glicosilação , Humanos , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/metabolismo , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Glicoproteínas de Membrana/metabolismo , Camundongos , Ligação Proteica , Desnaturação Proteica , Febre do Vale de Rift/patologia , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/imunologia
4.
Nat Immunol ; 24(8): 1358-1369, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365386

RESUMO

Following infection or vaccination, activated B cells at extrafollicular sites or within germinal centers (GCs) undergo vigorous clonal proliferation. Proliferating lymphocytes have been shown to undertake lactate dehydrogenase A (LDHA)-dependent aerobic glycolysis; however, the specific role of this metabolic pathway in a B cell transitioning from a naïve to a highly proliferative, activated state remains poorly defined. Here, we deleted LDHA in a stage-specific and cell-specific manner. We find that ablation of LDHA in a naïve B cell did not profoundly affect its ability to undergo a bacterial lipopolysaccharide-induced extrafollicular B cell response. On the other hand, LDHA-deleted naïve B cells had a severe defect in their capacities to form GCs and mount GC-dependent antibody responses. In addition, loss of LDHA in T cells severely compromised B cell-dependent immune responses. Strikingly, when LDHA was deleted in activated, as opposed to naïve, B cells, there were only minimal effects on the GC reaction and in the generation of high-affinity antibodies. These findings strongly suggest that naïve and activated B cells have distinct metabolic requirements that are further regulated by niche and cellular interactions.


Assuntos
Linfócitos B , Centro Germinativo , Linfócitos T , Ativação Linfocitária , Comunicação Celular
5.
Annu Rev Immunol ; 30: 565-610, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22224767

RESUMO

The mechanisms that drive normal B cell differentiation and activation are frequently subverted by B cell lymphomas for their unlimited growth and survival. B cells are particularly prone to malignant transformation because the machinery used for antibody diversification can cause chromosomal translocations and oncogenic mutations. The advent of functional and structural genomics has greatly accelerated our understanding of oncogenic mechanisms in lymphomagenesis. The signaling pathways that normal B cells utilize to sense antigens are frequently derailed in B cell malignancies, leading to constitutive activation of prosurvival pathways. These malignancies co-opt transcriptional regulatory systems that characterize their normal B cell counterparts and frequently alter epigenetic regulators of chromatin structure and gene expression. These mechanistic insights are ushering in an era of targeted therapies for these cancers based on the principles of pathogenesis.


Assuntos
Linfoma de Células B/etiologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Epigênese Genética , Humanos , Evasão da Resposta Imune , Linfoma de Células B/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Annu Rev Immunol ; 30: 295-312, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22224773

RESUMO

The mammalian inflammatory response is a rapid and complex physiological reaction to noxious stimuli including microbial pathogens. Although inflammation plays a valuable role in combating infection, its dysregulation often occurs in people and can cause a variety of pathologies, ranging from chronic inflammation, to autoimmunity, to cancer. In recent years, our understanding of both the cellular and molecular networks that regulate inflammation has improved dramatically. Although much of the focus has been on the study of protein regulators of inflammation, recent evidence also points to a critical role for a specific class of noncoding RNAs, called microRNAs (miRNAs), in managing certain features of the inflammatory process. In this review, we discuss recent advances in our understanding of miRNAs and their connection to inflammatory responses. Additionally, we consider the link between perturbations in miRNA levels and the onset of human inflammatory diseases.


Assuntos
Inflamação/genética , MicroRNAs/genética , Imunidade Adaptativa/genética , Animais , Autoimunidade/genética , Doenças Transmissíveis/genética , Doenças Transmissíveis/imunologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/imunologia , Humanos , Imunidade Inata/genética , Inflamação/imunologia
7.
Immunity ; 54(6): 1200-1218.e9, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33951416

RESUMO

Tissue macrophages self-renew during homeostasis and produce inflammatory mediators upon microbial infection. We examined the relationship between proliferative and inflammatory properties of tissue macrophages by defining the impact of the Wnt/ß-catenin pathway, a central regulator of self-renewal, in alveolar macrophages (AMs). Activation of ß-catenin by Wnt ligand inhibited AM proliferation and stemness, but promoted inflammatory activity. In a murine influenza viral pneumonia model, ß-catenin-mediated AM inflammatory activity promoted acute host morbidity; in contrast, AM proliferation enabled repopulation of reparative AMs and tissue recovery following viral clearance. Mechanistically, Wnt treatment promoted ß-catenin-HIF-1α interaction and glycolysis-dependent inflammation while suppressing mitochondrial metabolism and thereby, AM proliferation. Differential HIF-1α activities distinguished proliferative and inflammatory AMs in vivo. This ß-catenin-HIF-1α axis was conserved in human AMs and enhanced HIF-1α expression associated with macrophage inflammation in COVID-19 patients. Thus, inflammatory and reparative activities of lung macrophages are regulated by ß-catenin-HIF-1α signaling, with implications for the treatment of severe respiratory diseases.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Autorrenovação Celular/imunologia , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , SARS-CoV-2/imunologia , Biomarcadores , COVID-19/metabolismo , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Transdução de Sinais
8.
Nature ; 626(8000): 881-890, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297124

RESUMO

The pace of human brain development is highly protracted compared with most other species1-7. The maturation of cortical neurons is particularly slow, taking months to years to develop adult functions3-5. Remarkably, such protracted timing is retained in cortical neurons derived from human pluripotent stem cells (hPSCs) during in vitro differentiation or upon transplantation into the mouse brain4,8,9. Those findings suggest the presence of a cell-intrinsic clock setting the pace of neuronal maturation, although the molecular nature of this clock remains unknown. Here we identify an epigenetic developmental programme that sets the timing of human neuronal maturation. First, we developed a hPSC-based approach to synchronize the birth of cortical neurons in vitro which enabled us to define an atlas of morphological, functional and molecular maturation. We observed a slow unfolding of maturation programmes, limited by the retention of specific epigenetic factors. Loss of function of several of those factors in cortical neurons enables precocious maturation. Transient inhibition of EZH2, EHMT1 and EHMT2 or DOT1L, at progenitor stage primes newly born neurons to rapidly acquire mature properties upon differentiation. Thus our findings reveal that the rate at which human neurons mature is set well before neurogenesis through the establishment of an epigenetic barrier in progenitor cells. Mechanistically, this barrier holds transcriptional maturation programmes in a poised state that is gradually released to ensure the prolonged timeline of human cortical neuron maturation.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas , Células-Tronco Neurais , Neurogênese , Neurônios , Adulto , Animais , Humanos , Camundongos , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Fatores de Tempo , Transcrição Gênica
9.
Mol Cell ; 82(19): 3632-3645.e4, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36206739

RESUMO

The pause-release model of transcription proposes that 40-100 bases from the start site RNA Pol II pauses, followed by release into productive elongation. Pause release is facilitated by the PTEFb phosphorylation of the RNA Pol II elongation factor, Spt5. We mapped paused polymerases by eNET-seq and found frequent pausing in zones that extend ∼0.3-3 kb into genes even when PTEFb is inhibited. The fraction of paused polymerases or pausing propensity declines gradually over several kb and not abruptly as predicted for a discrete pause-release event. Spt5 depletion extends pausing zones, suggesting that it promotes the maturation of elongation complexes to a low-pausing state. The expression of mutants after Spt5 depletion showed that phosphomimetic substitutions in the CTR1 domain diminished pausing throughout genes. By contrast, mutants that prevent the phosphorylation of the Spt5 RNA-binding domain strengthened pausing. Thus, distinct Spt5 phospho-isoforms set the balance between pausing and elongation.


Assuntos
RNA Polimerase II , Fatores de Elongação da Transcrição , Fatores de Alongamento de Peptídeos/metabolismo , Fosforilação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
10.
Immunity ; 53(5): 952-970.e11, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33098766

RESUMO

Precise targeting of activation-induced cytidine deaminase (AID) to immunoglobulin (Ig) loci promotes antibody class switch recombination (CSR) and somatic hypermutation (SHM), whereas AID targeting of non-Ig loci can generate oncogenic DNA lesions. Here, we examined the contribution of G-quadruplex (G4) nucleic acid structures to AID targeting in vivo. Mice bearing a mutation in Aicda (AIDG133V) that disrupts AID-G4 binding modeled the pathology of hyper-IgM syndrome patients with an orthologous mutation, lacked CSR and SHM, and had broad defects in genome-wide AIDG133V chromatin localization. Genome-wide analyses also revealed that wild-type AID localized to MHCII genes, and AID expression correlated with decreased MHCII expression in germinal center B cells and diffuse large B cell lymphoma. Our findings indicate a crucial role for G4 binding in AID targeting and suggest that AID activity may extend beyond Ig loci to regulate the expression of genes relevant to the physiology and pathology of activated B cells.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Quadruplex G , Síndrome de Imunodeficiência com Hiper-IgM/etiologia , Síndrome de Imunodeficiência com Hiper-IgM/metabolismo , Mutação , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biologia Computacional/métodos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Ativação Enzimática , Imunofluorescência , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Síndrome de Imunodeficiência com Hiper-IgM/diagnóstico , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/imunologia , Imunofenotipagem , Ativação Linfocitária/genética , Linfoma Difuso de Grandes Células B/etiologia , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Camundongos Transgênicos
11.
Nature ; 617(7959): 55-60, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37138107

RESUMO

Planets with short orbital periods (roughly under 10 days) are common around stars like the Sun1,2. Stars expand as they evolve and thus we expect their close planetary companions to be engulfed, possibly powering luminous mass ejections from the host star3-5. However, this phase has never been directly observed. Here we report observations of ZTF SLRN-2020, a short-lived optical outburst in the Galactic disk accompanied by bright and long-lived infrared emission. The resulting light curve and spectra share striking similarities with those of red novae6,7-a class of eruptions now confirmed8 to arise from mergers of binary stars. Its exceptionally low optical luminosity (approximately 1035 erg s-1) and radiated energy (approximately 6.5 × 1041 erg) point to the engulfment of a planet of fewer than roughly ten Jupiter masses by its Sun-like host star. We estimate the Galactic rate of such subluminous red novae to be roughly between 0.1 and several per year. Future Galactic plane surveys should routinely identify these, showing the demographics of planetary engulfment and the ultimate fate of planets in the inner Solar System.

12.
Nature ; 610(7931): 269-272, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224416

RESUMO

The Wolf-Rayet (WR) binary system WR140 is a close (0.9-16.7 mas; ref. 1) binary star consisting of an O5 primary and WC7 companion2 and is known as the archetype of episodic dust-producing WRs. Dust in WR binaries is known to form in a confined stream originating from the collision of the two stellar winds, with orbital motion of the binary sculpting the large-scale dust structure into arcs as dust is swept radially outwards. It is understood that sensitive conditions required for dust production in WR140 are only met around periastron when the two stars are sufficiently close2-4. Here we present multiepoch imagery of the circumstellar dust shell of WR140. We constructed geometric models that closely trace the expansion of the intricately structured dust plume, showing that complex effects induced by orbital modulation may result in a 'Goldilocks zone' for dust production. We find that the expansion of the dust plume cannot be reproduced under the assumption of a simple uniform-speed outflow, finding instead the dust to be accelerating. This constitutes a direct kinematic record of dust motion under acceleration by radiation pressure and further highlights the complexity of the physical conditions in colliding-wind binaries.

13.
Nature ; 608(7922): 346-352, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896745

RESUMO

Living birds (Aves) have bodies substantially modified from the ancestral reptilian condition. The avian pelvis in particular experienced major changes during the transition from early archosaurs to living birds1,2. This stepwise transformation is well documented by an excellent fossil record2-4; however, the ontogenetic alterations that underly it are less well understood. We used embryological imaging techniques to examine the morphogenesis of avian pelvic tissues in three dimensions, allowing direct comparison with the fossil record. Many ancestral dinosaurian features2 (for example, a forward-facing pubis, short ilium and pubic 'boot') are transiently present in the early morphogenesis of birds and arrive at their typical 'avian' form after transitioning through a prenatal developmental sequence that mirrors the phylogenetic sequence of character acquisition. We demonstrate quantitatively that avian pelvic ontogeny parallels the non-avian dinosaur-to-bird transition and provide evidence for phenotypic covariance within the pelvis that is conserved across Archosauria. The presence of ancestral states in avian embryos may stem from this conserved covariant relationship. In sum, our data provide evidence that the avian pelvis, whose early development has been little studied5-7, evolved through terminal addition-a mechanism8-10 whereby new apomorphic states are added to the end of a developmental sequence, resulting in expression8,11 of ancestral character states earlier in that sequence. The phenotypic integration we detected suggests a previously unrecognized mechanism for terminal addition and hints that retention of ancestral states in development is common during evolutionary transitions.


Assuntos
Aves , Dinossauros , Desenvolvimento Embrionário , Fósseis , Pelve , Filogenia , Animais , Aves/anatomia & histologia , Aves/classificação , Aves/embriologia , Dinossauros/anatomia & histologia , Dinossauros/embriologia , Imageamento Tridimensional , Pelve/anatomia & histologia , Pelve/embriologia
14.
Nature ; 612(7941): 714-719, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477531

RESUMO

Molecular phylogenetics of microbial eukaryotes has reshaped the tree of life by establishing broad taxonomic divisions, termed supergroups, that supersede the traditional kingdoms of animals, fungi and plants, and encompass a much greater breadth of eukaryotic diversity1. The vast majority of newly discovered species fall into a small number of known supergroups. Recently, however, a handful of species with no clear relationship to other supergroups have been described2-4, raising questions about the nature and degree of undiscovered diversity, and exposing the limitations of strictly molecular-based exploration. Here we report ten previously undescribed strains of microbial predators isolated through culture that collectively form a diverse new supergroup of eukaryotes, termed Provora. The Provora supergroup is genetically, morphologically and behaviourally distinct from other eukaryotes, and comprises two divergent clades of predators-Nebulidia and Nibbleridia-that are superficially similar to each other, but differ fundamentally in ultrastructure, behaviour and gene content. These predators are globally distributed in marine and freshwater environments, but are numerically rare and have consequently been overlooked by molecular-diversity surveys. In the age of high-throughput analyses, investigation of eukaryotic diversity through culture remains indispensable for the discovery of rare but ecologically and evolutionarily important eukaryotes.


Assuntos
Eucariotos , Cadeia Alimentar , Microbiologia , Filogenia , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/ultraestrutura , Biodiversidade , Ecologia , Eucariotos/classificação , Eucariotos/genética , Eucariotos/ultraestrutura , Células Eucarióticas/classificação , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Comportamento Predatório , Especificidade da Espécie
15.
Nature ; 604(7905): 287-291, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418635

RESUMO

Thermophotovoltaics (TPVs) convert predominantly infrared wavelength light to electricity via the photovoltaic effect, and can enable approaches to energy storage1,2 and conversion3-9 that use higher temperature heat sources than the turbines that are ubiquitous in electricity production today. Since the first demonstration of 29% efficient TPVs (Fig. 1a) using an integrated back surface reflector and a tungsten emitter at 2,000 °C (ref. 10), TPV fabrication and performance have improved11,12. However, despite predictions that TPV efficiencies can exceed 50% (refs. 11,13,14), the demonstrated efficiencies are still only as high as 32%, albeit at much lower temperatures below 1,300 °C (refs. 13-15). Here we report the fabrication and measurement of TPV cells with efficiencies of more than 40% and experimentally demonstrate the efficiency of high-bandgap tandem TPV cells. The TPV cells are two-junction devices comprising III-V materials with bandgaps between 1.0 and 1.4 eV that are optimized for emitter temperatures of 1,900-2,400 °C. The cells exploit the concept of band-edge spectral filtering to obtain high efficiency, using highly reflective back surface reflectors to reject unusable sub-bandgap radiation back to the emitter. A 1.4/1.2 eV device reached a maximum efficiency of (41.1 ± 1)% operating at a power density of 2.39 W cm-2 and an emitter temperature of 2,400 °C. A 1.2/1.0 eV device reached a maximum efficiency of (39.3 ± 1)% operating at a power density of 1.8 W cm-2 and an emitter temperature of 2,127 °C. These cells can be integrated into a TPV system for thermal energy grid storage to enable dispatchable renewable energy. This creates a pathway for thermal energy grid storage to reach sufficiently high efficiency and sufficiently low cost to enable decarbonization of the electricity grid.


Assuntos
Eletricidade , Temperatura Alta , Raios Infravermelhos , Temperatura
16.
Nature ; 603(7900): 265-270, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264758

RESUMO

Molecular recognition1-4 and supramolecular assembly5-8 cover a broad spectrum9-11 of non-covalently orchestrated phenomena between molecules. Catalysis12 of such processes, however, unlike that for the formation of covalent bonds, is limited to approaches13-16 that rely on sophisticated catalyst design. Here we establish a simple and versatile strategy to facilitate molecular recognition by extending electron catalysis17, which is widely applied18-21 in synthetic covalent chemistry, into the realm of supramolecular non-covalent chemistry. As a proof of principle, we show that the formation of a trisradical complex22 between a macrocyclic host and a dumbbell-shaped guest-a molecular recognition process that is kinetically forbidden under ambient conditions-can be accelerated substantially on the addition of catalytic amounts of a chemical electron source. It is, therefore, electrochemically possible to control23 the molecular recognition temporally and produce a nearly arbitrary molar ratio between the substrates and complexes ranging between zero and the equilibrium value. Such kinetically stable supramolecular systems24 are difficult to obtain precisely by other means. The use of the electron as a catalyst in molecular recognition will inspire chemists and biologists to explore strategies that can be used to fine-tune non-covalent events, control assembly at different length scales25-27 and ultimately create new forms of complex matter28-30.

17.
Mol Cell ; 80(6): 1104-1122.e9, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33259812

RESUMO

Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system.


Assuntos
Células Epiteliais Alveolares/metabolismo , COVID-19/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , SARS-CoV-2/metabolismo , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , Antivirais , COVID-19/genética , COVID-19/patologia , Chlorocebus aethiops , Efeito Citopatogênico Viral , Citoesqueleto , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/virologia , Fosfoproteínas/genética , Transporte Proteico , Proteoma/genética , SARS-CoV-2/genética , Transdução de Sinais , Células Vero , Tratamento Farmacológico da COVID-19
18.
Genes Dev ; 34(3-4): 209-225, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919192

RESUMO

The kinetochore complex is a conserved machinery that connects chromosomes to spindle microtubules. During meiosis, the kinetochore is restructured to accommodate a specialized chromosome segregation pattern. In budding yeast, meiotic kinetochore remodeling is mediated by the temporal changes in the abundance of a single subunit called Ndc80. We previously described the regulatory events that control the timely synthesis of Ndc80. Here, we report that Ndc80 turnover is also tightly regulated in meiosis: Ndc80 degradation is active in meiotic prophase, but not in metaphase I. Ndc80 degradation depends on the ubiquitin ligase APCAma1 and is mediated by the proteasome. Importantly, Aurora B-dependent Ndc80 phosphorylation, a mark that has been previously implicated in correcting erroneous microtubule-kinetochore attachments, is essential for Ndc80 degradation in a microtubule-independent manner. The N terminus of Ndc80, including a 27-residue sequence and Aurora B phosphorylation sites, is both necessary and sufficient for kinetochore protein degradation. Finally, defects in Ndc80 turnover predispose meiotic cells to chromosome mis-segregation. Our study elucidates the mechanism by which meiotic cells modulate their kinetochore composition through regulated Ndc80 degradation, and demonstrates that Aurora B-dependent regulation of kinetochores extends beyond altering microtubule attachments.


Assuntos
Aurora Quinase B/metabolismo , Cinetocoros/metabolismo , Meiose/fisiologia , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Microtúbulos/metabolismo , Proteólise
19.
Plant Cell ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179507

RESUMO

EARLY NODULIN 93 (ENOD93) has been genetically associated with biological nitrogen fixation in legumes and nitrogen use efficiency in cereals, but its precise function is unknown. We show that hidden Markov models define ENOD93 as a homolog of the N-terminal domain of RESPIRATORY SUPERCOMPLEX FACTOR 2 (RCF2). RCF2 regulates cytochrome oxidase (CIV), influencing the generation of a mitochondrial proton motive force in yeast (Saccharomyces cerevisiae). Knockout of ENOD93 in Arabidopsis (Arabidopsis thaliana) causes a short root phenotype and early flowering. ENOD93 is associated with a protein complex the size of CIV in mitochondria, but neither CIV abundance nor its activity changed in ruptured organelles of enod93. However, a progressive loss of ADP-dependent respiration rate was observed in intact enod93 mitochondria, which could be recovered in complemented lines. Mitochondrial membrane potential was higher in enod93 in a CIV-dependent manner, but ATP synthesis and ADP depletion rates progressively decreased. The respiration rate of whole enod93 seedlings was elevated, and root ADP content was nearly double that in wild type without a change in ATP content. We propose that ENOD93 and HYPOXIA-INDUCED GENE DOMAIN 2 (HIGD2) are the functional equivalent of yeast RCF2 but have remained undiscovered in many eukaryotic lineages because they are encoded by two distinct genes.

20.
Immunity ; 48(6): 1258-1270.e6, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29884461

RESUMO

Thymus development is critical to the adaptive immune system, yet a comprehensive transcriptional framework capturing thymus organogenesis at single-cell resolution is still needed. We applied single-cell RNA sequencing (RNA-seq) to capture 8 days of thymus development, perturbations of T cell receptor rearrangement, and in vitro organ cultures, producing profiles of 24,279 cells. We resolved transcriptional heterogeneity of developing lymphocytes, and genetic perturbation confirmed T cell identity of conventional and non-conventional lymphocytes. We characterized maturation dynamics of thymic epithelial cells in vivo, classified cell maturation state in a thymic organ culture, and revealed the intrinsic capacity of thymic epithelium to preserve transcriptional regularity despite exposure to exogenous retinoic acid. Finally, by integrating the cell atlas with human genome-wide association study (GWAS) data and autoimmune-disease-related genes, we implicated embryonic thymus-resident cells as possible participants in autoimmune disease etiologies. This resource provides a single-cell transcriptional framework for biological discovery and molecular analysis of thymus organogenesis.


Assuntos
Diferenciação Celular/imunologia , Análise de Sequência de RNA/métodos , Linfócitos T/imunologia , Timo/embriologia , Animais , Doenças Autoimunes/imunologia , Embrião de Mamíferos , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Organogênese/imunologia , Linfócitos T/citologia , Timo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA