Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109.792
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(20): 4438-4453.e23, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774681

RESUMO

Cellular perturbations underlying Alzheimer's disease (AD) are primarily studied in human postmortem samples and model organisms. Here, we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of AD pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the early cortical amyloid response-were prominent in neurons, wherein we identified a transitional hyperactive state preceding the loss of excitatory neurons, which we confirmed by acute slice physiology on independent biopsy specimens. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathology increased. Finally, both oligodendrocytes and pyramidal neurons upregulated genes associated with ß-amyloid production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.


Assuntos
Doença de Alzheimer , Lobo Frontal , Microglia , Neurônios , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide , Peptídeos beta-Amiloides/metabolismo , Microglia/patologia , Neurônios/patologia , Células Piramidais , Biópsia , Lobo Frontal/patologia , Análise da Expressão Gênica de Célula Única , Núcleo Celular/metabolismo , Núcleo Celular/patologia
2.
Nat Immunol ; 24(4): 595-603, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36941400

RESUMO

Upon detecting pathogens or cell stress, several NOD-like receptors (NLRs) form inflammasome complexes with the adapter ASC and caspase-1, inducing gasdermin D (GSDMD)-dependent cell death and maturation and release of IL-1ß and IL-18. The triggers and activation mechanisms of several inflammasome-forming sensors are not well understood. Here we show that mitochondrial damage activates the NLRP10 inflammasome, leading to ASC speck formation and caspase-1-dependent cytokine release. While the AIM2 inflammasome can also sense mitochondrial demise by detecting mitochondrial DNA (mtDNA) in the cytosol, NLRP10 monitors mitochondrial integrity in an mtDNA-independent manner, suggesting the recognition of distinct molecular entities displayed by the damaged organelles. NLRP10 is highly expressed in differentiated human keratinocytes, in which it can also assemble an inflammasome. Our study shows that this inflammasome surveils mitochondrial integrity. These findings might also lead to a better understanding of mitochondria-linked inflammatory diseases.


Assuntos
Citocinas , Inflamassomos , Humanos , Inflamassomos/metabolismo , Caspase 1/metabolismo , Citocinas/metabolismo , Morte Celular , DNA Mitocondrial/genética , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo
3.
Cell ; 183(4): 847-849, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33186527

RESUMO

In this issue of Cell, Liu et al. present FucoID, a glycosyltransferase-mediated tagging platform, to biochemically label and capture antigen-specific T cells. With this technology, the authors isolate and characterize tumor-specific CD8+ and CD4+ T cells in murine tumor models. FucoID shows promise as a tool to enhance the understanding of anti-tumor immune responses.


Assuntos
Linfócitos T CD8-Positivos , Células Dendríticas , Animais , Antígenos de Neoplasias , Biotinilação , Linfócitos T CD4-Positivos , Camundongos , Açúcares
4.
Cell ; 172(3): 409-422.e21, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29290465

RESUMO

Selenoproteins are rare proteins among all kingdoms of life containing the 21st amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisite resistance to irreversible overoxidation as cells expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4cys/cys cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.


Assuntos
Apoptose , Glutationa Peroxidase/metabolismo , Convulsões/metabolismo , Selênio/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Feminino , Glutationa Peroxidase/genética , Células HEK293 , Humanos , Peróxido de Hidrogênio/toxicidade , Interneurônios/metabolismo , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Convulsões/etiologia
5.
Cell ; 169(1): 58-71.e14, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340350

RESUMO

Natural killer (NK) cells play a key role in innate immunity by detecting alterations in self and non-self ligands via paired NK cell receptors (NKRs). Despite identification of numerous NKR-ligand interactions, physiological ligands for the prototypical NK1.1 orphan receptor remain elusive. Here, we identify a viral ligand for the inhibitory and activating NKR-P1 (NK1.1) receptors. This murine cytomegalovirus (MCMV)-encoded protein, m12, restrains NK cell effector function by directly engaging the inhibitory NKR-P1B receptor. However, m12 also interacts with the activating NKR-P1A/C receptors to counterbalance m12 decoy function. Structural analyses reveal that m12 sequesters a large NKR-P1 surface area via a "polar claw" mechanism. Polymorphisms in, and ablation of, the viral m12 protein and host NKR-P1B/C alleles impact NK cell responses in vivo. Thus, we identify the long-sought foreign ligand for this key immunoregulatory NKR family and reveal how it controls the evolutionary balance of immune recognition during host-pathogen interplay.


Assuntos
Células Matadoras Naturais/imunologia , Muromegalovirus/imunologia , Receptores de Células Matadoras Naturais/imunologia , Proteínas Virais/metabolismo , Animais , Antígenos Ly/metabolismo , Linhagem Celular , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Inata , Camundongos , Células NIH 3T3 , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ratos
6.
Nat Immunol ; 20(7): 865-878, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31086333

RESUMO

Natural killer (NK) cells are critical mediators of host immunity to pathogens. Here, we demonstrate that the endoplasmic reticulum stress sensor inositol-requiring enzyme 1 (IRE1α) and its substrate transcription factor X-box-binding protein 1 (XBP1) drive NK cell responses against viral infection and tumors in vivo. IRE1α-XBP1 were essential for expansion of activated mouse and human NK cells and are situated downstream of the mammalian target of rapamycin signaling pathway. Transcriptome and chromatin immunoprecipitation analysis revealed c-Myc as a new and direct downstream target of XBP1 for regulation of NK cell proliferation. Genetic ablation or pharmaceutical blockade of IRE1α downregulated c-Myc, and NK cells with c-Myc haploinsufficency phenocopied IRE1α-XBP1 deficiency. c-Myc overexpression largely rescued the proliferation defect in IRE1α-/- NK cells. Like c-Myc, IRE1α-XBP1 also promotes oxidative phosphorylation in NK cells. Overall, our study identifies a IRE1α-XBP1-cMyc axis in NK cell immunity, providing insight into host protection against infection and cancer.


Assuntos
Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Regulação da Expressão Gênica , Genes myc , Imunidade/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Biomarcadores , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Citotoxicidade Imunológica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ativação Linfocitária/imunologia , Melanoma Experimental , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Transdução de Sinais , Proteína 1 de Ligação a X-Box/metabolismo
7.
Mol Cell ; 83(10): 1693-1709.e9, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37207627

RESUMO

Cargo sequestration is a fundamental step of selective autophagy in which cells generate a double-membrane structure termed an "autophagosome" on the surface of cargoes. NDP52, TAX1BP1, and p62 bind FIP200, which recruits the ULK1/2 complex to initiate autophagosome formation on cargoes. How OPTN initiates autophagosome formation during selective autophagy remains unknown despite its importance in neurodegeneration. Here, we uncover an unconventional path of PINK1/Parkin mitophagy initiation by OPTN that does not begin with FIP200 binding or require the ULK1/2 kinases. Using gene-edited cell lines and in vitro reconstitutions, we show that OPTN utilizes the kinase TBK1, which binds directly to the class III phosphatidylinositol 3-kinase complex I to initiate mitophagy. During NDP52 mitophagy initiation, TBK1 is functionally redundant with ULK1/2, classifying TBK1's role as a selective autophagy-initiating kinase. Overall, this work reveals that OPTN mitophagy initiation is mechanistically distinct and highlights the mechanistic plasticity of selective autophagy pathways.


Assuntos
Mitofagia , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Autofagossomos/metabolismo , Proteínas Reguladoras de Apoptose , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Autofagia
8.
Nature ; 630(8015): 158-165, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38693268

RESUMO

The liver has a unique ability to regenerate1,2; however, in the setting of acute liver failure (ALF), this regenerative capacity is often overwhelmed, leaving emergency liver transplantation as the only curative option3-5. Here, to advance understanding of human liver regeneration, we use paired single-nucleus RNA sequencing combined with spatial profiling of healthy and ALF explant human livers to generate a single-cell, pan-lineage atlas of human liver regeneration. We uncover a novel ANXA2+ migratory hepatocyte subpopulation, which emerges during human liver regeneration, and a corollary subpopulation in a mouse model of acetaminophen (APAP)-induced liver regeneration. Interrogation of necrotic wound closure and hepatocyte proliferation across multiple timepoints following APAP-induced liver injury in mice demonstrates that wound closure precedes hepatocyte proliferation. Four-dimensional intravital imaging of APAP-induced mouse liver injury identifies motile hepatocytes at the edge of the necrotic area, enabling collective migration of the hepatocyte sheet to effect wound closure. Depletion of hepatocyte ANXA2 reduces hepatocyte growth factor-induced human and mouse hepatocyte migration in vitro, and abrogates necrotic wound closure following APAP-induced mouse liver injury. Together, our work dissects unanticipated aspects of liver regeneration, demonstrating an uncoupling of wound closure and hepatocyte proliferation and uncovering a novel migratory hepatocyte subpopulation that mediates wound closure following liver injury. Therapies designed to promote rapid reconstitution of normal hepatic microarchitecture and reparation of the gut-liver barrier may advance new areas of therapeutic discovery in regenerative medicine.


Assuntos
Falência Hepática Aguda , Regeneração Hepática , Animais , Feminino , Humanos , Masculino , Camundongos , Acetaminofen/farmacologia , Linhagem da Célula , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/patologia , Falência Hepática Aguda/patologia , Falência Hepática Aguda/induzido quimicamente , Regeneração Hepática/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Necrose/induzido quimicamente , Medicina Regenerativa , Análise da Expressão Gênica de Célula Única , Cicatrização
9.
Nature ; 628(8008): 612-619, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509366

RESUMO

There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.


Assuntos
Dura-Máter , Imunidade Humoral , Tecido Linfoide , Veias , Administração Intranasal , Antígenos/administração & dosagem , Antígenos/imunologia , Medula Óssea/imunologia , Sistema Nervoso Central/irrigação sanguínea , Sistema Nervoso Central/imunologia , Dura-Máter/irrigação sanguínea , Dura-Máter/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Vasos Linfáticos/imunologia , Tecido Linfoide/irrigação sanguínea , Tecido Linfoide/imunologia , Plasmócitos/imunologia , Crânio/irrigação sanguínea , Linfócitos T/imunologia , Veias/fisiologia , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Animais , Camundongos , Idoso de 80 Anos ou mais
10.
Nature ; 629(8010): 184-192, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600378

RESUMO

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios , Glucocorticoides , Inflamação , Macrófagos , Mitocôndrias , Succinatos , Animais , Feminino , Humanos , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Carboxiliases/metabolismo , Carboxiliases/antagonistas & inibidores , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Citocinas/imunologia , Citocinas/metabolismo , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Hidroliases/deficiência , Hidroliases/genética , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Ativação Enzimática/efeitos dos fármacos
11.
Nature ; 632(8023): 50-54, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020171

RESUMO

Giant exoplanets orbiting close to their host stars are unlikely to have formed in their present configurations1. These 'hot Jupiter' planets are instead thought to have migrated inward from beyond the ice line and several viable migration channels have been proposed, including eccentricity excitation through angular-momentum exchange with a third body followed by tidally driven orbital circularization2,3. The discovery of the extremely eccentric (e = 0.93) giant exoplanet HD 80606 b (ref. 4) provided observational evidence that hot Jupiters may have formed through this high-eccentricity tidal-migration pathway5. However, no similar hot-Jupiter progenitors have been found and simulations predict that one factor affecting the efficacy of this mechanism is exoplanet mass, as low-mass planets are more likely to be tidally disrupted during periastron passage6-8. Here we present spectroscopic and photometric observations of TIC 241249530 b, a high-mass, transiting warm Jupiter with an extreme orbital eccentricity of e = 0.94. The orbit of TIC 241249530 b is consistent with a history of eccentricity oscillations and a future tidal circularization trajectory. Our analysis of the mass and eccentricity distributions of the transiting-warm-Jupiter population further reveals a correlation between high mass and high eccentricity.

12.
Nature ; 623(7985): 95-99, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914947

RESUMO

Seismic images of Earth's interior have revealed two continent-sized anomalies with low seismic velocities, known as the large low-velocity provinces (LLVPs), in the lowermost mantle1. The LLVPs are often interpreted as intrinsically dense heterogeneities that are compositionally distinct from the surrounding mantle2. Here we show that LLVPs may represent buried relics of Theia mantle material (TMM) that was preserved in proto-Earth's mantle after the Moon-forming giant impact3. Our canonical giant-impact simulations show that a fraction of Theia's mantle could have been delivered to proto-Earth's solid lower mantle. We find that TMM is intrinsically 2.0-3.5% denser than proto-Earth's mantle based on models of Theia's mantle and the observed higher FeO content of the Moon. Our mantle convection models show that dense TMM blobs with a size of tens of kilometres after the impact can later sink and accumulate into LLVP-like thermochemical piles atop Earth's core and survive to the present day. The LLVPs may, thus, be a natural consequence of the Moon-forming giant impact. Because giant impacts are common at the end stages of planet accretion, similar mantle heterogeneities caused by impacts may also exist in the interiors of other planetary bodies.

13.
Nature ; 619(7970): 487-490, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468588

RESUMO

Several long-period radio transients have recently been discovered, with strongly polarized coherent radio pulses appearing on timescales between tens to thousands of seconds1,2. In some cases, the radio pulses have been interpreted as coming from rotating neutron stars with extremely strong magnetic fields, known as magnetars; the origin of other, occasionally periodic and less-well-sampled radio transients is still debated3. Coherent periodic radio emission is usually explained by rotating dipolar magnetic fields and pair-production mechanisms, but such models do not easily predict radio emission from such slowly rotating neutron stars and maintain it for extended times. On the other hand, highly magnetic isolated white dwarfs would be expected to have long spin periodicities, but periodic coherent radio emission has not yet been directly detected from these sources. Here we report observations of a long-period (21 min) radio transient, which we have labelled GPM J1839-10. The pulses vary in brightness by two orders of magnitude, last between 30 and 300 s and have quasiperiodic substructure. The observations prompted a search of radio archives and we found that the source has been repeating since at least 1988. The archival data enabled constraint of the period derivative to <3.6 × 10-13 s s-1, which is at the very limit of any classical theoretical model that predicts dipolar radio emission from an isolated neutron star.

14.
Mol Cell ; 81(9): 2013-2030.e9, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33773106

RESUMO

The sequestration of damaged mitochondria within double-membrane structures termed autophagosomes is a key step of PINK1/Parkin mitophagy. The ATG4 family of proteases are thought to regulate autophagosome formation exclusively by processing the ubiquitin-like ATG8 family (LC3/GABARAPs). We discover that human ATG4s promote autophagosome formation independently of their protease activity and of ATG8 family processing. ATG4 proximity networks reveal a role for ATG4s and their proximity partners, including the immune-disease protein LRBA, in ATG9A vesicle trafficking to mitochondria. Artificial intelligence-directed 3D electron microscopy of phagophores shows that ATG4s promote phagophore-ER contacts during the lipid-transfer phase of autophagosome formation. We also show that ATG8 removal during autophagosome maturation does not depend on ATG4 activity. Instead, ATG4s can disassemble ATG8-protein conjugates, revealing a role for ATG4s as deubiquitinating-like enzymes. These findings establish non-canonical roles of the ATG4 family beyond the ATG8 lipidation axis and provide an AI-driven framework for rapid 3D electron microscopy.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/metabolismo , Metabolismo dos Lipídeos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/genética , Inteligência Artificial , Autofagossomos/genética , Autofagossomos/ultraestrutura , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Cisteína Endopeptidases/genética , Células HEK293 , Células HeLa , Humanos , Imageamento Tridimensional , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Mitofagia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transporte Proteico , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
15.
Immunity ; 51(6): 997-1011.e7, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851905

RESUMO

Toll-like receptor (TLR) activation induces inflammatory responses in macrophages by activating temporally defined transcriptional cascades. Whether concurrent changes in the cellular metabolism that occur upon TLR activation influence the quality of the transcriptional responses remains unknown. Here, we investigated how macrophages adopt their metabolism early after activation to regulate TLR-inducible gene induction. Shortly after TLR4 activation, macrophages increased glycolysis and tricarboxylic acid (TCA) cycle volume. Metabolic tracing studies revealed that TLR signaling redirected metabolic fluxes to generate acetyl-Coenzyme A (CoA) from glucose resulting in augmented histone acetylation. Signaling through the adaptor proteins MyD88 and TRIF resulted in activation of ATP-citrate lyase, which in turn facilitated the induction of distinct LPS-inducible gene sets. We postulate that metabolic licensing of histone acetylation provides another layer of control that serves to fine-tune transcriptional responses downstream of TLR activation. Our work highlights the potential of targeting the metabolic-epigenetic axis in inflammatory settings.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetilcoenzima A/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo , Receptor 4 Toll-Like/metabolismo , Acetilação , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Ciclo do Ácido Cítrico/fisiologia , Glicólise/fisiologia , Humanos , Lipopolissacarídeos/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Transcrição Gênica/genética
16.
Nature ; 606(7916): 884-889, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35512730

RESUMO

Solid-state spin qubits is a promising platform for quantum computation and quantum networks1,2. Recent experiments have demonstrated high-quality control over multi-qubit systems3-8, elementary quantum algorithms8-11 and non-fault-tolerant error correction12-14. Large-scale systems will require using error-corrected logical qubits that are operated fault tolerantly, so that reliable computation becomes possible despite noisy operations15-18. Overcoming imperfections in this way remains an important outstanding challenge for quantum science15,19-27. Here, we demonstrate fault-tolerant operations on a logical qubit using spin qubits in diamond. Our approach is based on the five-qubit code with a recently discovered flag protocol that enables fault tolerance using a total of seven qubits28-30. We encode the logical qubit using a new protocol based on repeated multi-qubit measurements and show that it outperforms non-fault-tolerant encoding schemes. We then fault-tolerantly manipulate the logical qubit through a complete set of single-qubit Clifford gates. Finally, we demonstrate flagged stabilizer measurements with real-time processing of the outcomes. Such measurements are a primitive for fault-tolerant quantum error correction. Although future improvements in fidelity and the number of qubits will be required to suppress logical error rates below the physical error rates, our realization of fault-tolerant protocols on the logical-qubit level is a key step towards quantum information processing based on solid-state spins.

17.
Nature ; 603(7901): 497-502, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236989

RESUMO

Discrimination of self from non-self is fundamental to a wide range of immunological processes1. During pregnancy, the mother does not recognize the placenta as immunologically foreign because antigens expressed by trophoblasts, the placental cells that interface with the maternal immune system, do not activate maternal T cells2. Currently, these activation defects are thought to reflect suppression by regulatory T cells3. By contrast, mechanisms of B cell tolerance to trophoblast antigens have not been identified. Here we provide evidence that glycan-mediated B cell suppression has a key role in establishing fetomaternal tolerance in mice. B cells specific for a model trophoblast antigen are strongly suppressed through CD22-LYN inhibitory signalling, which in turn implicates the sialylated glycans of the antigen as key suppressive determinants. Moreover, B cells mediate the MHC-class-II-restricted presentation of antigens to CD4+ T cells, which leads to T cell suppression, and trophoblast-derived sialoglycoproteins are released into the maternal circulation during pregnancy in mice and humans. How protein glycosylation promotes non-immunogenic placental self-recognition may have relevance to immune-mediated pregnancy complications and to tumour immune evasion. We also anticipate that our findings will bolster efforts to harness glycan biology to control antigen-specific immune responses in autoimmune disease.


Assuntos
Antígenos , Placenta , Trofoblastos , Animais , Doenças Autoimunes , Linfócitos B , Feminino , Tolerância Imunológica , Camundongos , Placenta/imunologia , Polissacarídeos/metabolismo , Gravidez/imunologia
18.
Nature ; 608(7921): 87-92, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922502

RESUMO

Generation of silicic magmas leads to emplacement of granite plutons, huge explosive volcanic eruptions and physical and chemical zoning of continental and arc crust1-7. Whereas timescales for silicic magma generation in the deep and middle crust are prolonged8, magma transfer into the upper crust followed by eruption is episodic and can be rapid9-12. Ages of inherited zircons and sanidines from four Miocene ignimbrites in the Central Andes indicate a gap of 4.6 Myr between initiation of pluton emplacement and onset of super-eruptions, with a 1-Myr cyclicity. We show that inherited zircons and sanidine crystals were stored at temperatures <470 °C in these plutons before incorporation in ignimbrite magmas. Our observations can be explained by silicic melt segregation in a middle-crustal hot zone with episodic melt ascent from an unstable layer at the top of the zone with a timescale governed by the rheology of the upper crust. After thermal incubation of growing plutons, large upper-crustal magma chambers can form in a few thousand years or less by dike transport from the hot-zone melt layer. Instability and disruption of earlier plutonic rock occurred in a few decades or less just before or during super-eruptions.

19.
Nature ; 601(7894): 526-530, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082416

RESUMO

The high-frequency radio sky is bursting with synchrotron transients from massive stellar explosions and accretion events, but the low-frequency radio sky has, so far, been quiet beyond the Galactic pulsar population and the long-term scintillation of active galactic nuclei. The low-frequency band, however, is sensitive to exotic coherent and polarized radio-emission processes, such as electron-cyclotron maser emission from flaring M dwarfs1, stellar magnetospheric plasma interactions with exoplanets2 and a population of steep-spectrum pulsars3, making Galactic-plane searches a prospect for blind-transient discovery. Here we report an analysis of archival low-frequency radio data that reveals a periodic, low-frequency radio transient. We find that the source pulses every 18.18 min, an unusual periodicity that has, to our knowledge, not been observed previously. The emission is highly linearly polarized, bright, persists for 30-60 s on each occurrence and is visible across a broad frequency range. At times, the pulses comprise short-duration (<0.5 s) bursts; at others, a smoother profile is observed. These profiles evolve on timescales of hours. By measuring the dispersion of the radio pulses with respect to frequency, we have localized the source to within our own Galaxy and suggest that it could be an ultra-long-period magnetar.

20.
Nature ; 611(7935): 265-270, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36261531

RESUMO

The visible world is founded on the proton, the only composite building block of matter that is stable in nature. Consequently, understanding the formation of matter relies on explaining the dynamics and the properties of the proton's bound state. A fundamental property of the proton involves the response of the system to an external electromagnetic field. It is characterized by the electromagnetic polarizabilities1 that describe how easily the charge and magnetization distributions inside the system are distorted by the electromagnetic field. Moreover, the generalized polarizabilities2 map out the resulting deformation of the densities in a proton subject to an electromagnetic field. They disclose essential information about the underlying system dynamics and provide a key for decoding the proton structure in terms of the theory of the strong interaction that binds its elementary quark and gluon constituents. Of particular interest is a puzzle in the electric generalized polarizability of the proton that remains unresolved for two decades2. Here we report measurements of the proton's electromagnetic generalized polarizabilities at low four-momentum transfer squared. We show evidence of an anomaly to the behaviour of the proton's electric generalized polarizability that contradicts the predictions of nuclear theory and derive its signature in the spatial distribution of the induced polarization in the proton. The reported measurements suggest the presence of a new, not-yet-understood dynamical mechanism in the proton and present notable challenges to the nuclear theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA