Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 145(6)2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29444894

RESUMO

Quantifying cell morphology is fundamental to the statistical study of cell populations, and can help unravel mechanisms underlying cell and tissue morphogenesis. Current methods, however, require extensive human intervention, are highly parameter sensitive, or produce metrics that are difficult to interpret biologically. We therefore developed a method, lobe contribution elliptical Fourier analysis (LOCO-EFA), which generates from digitalised two-dimensional cell outlines meaningful descriptors that can be directly matched to morphological features. This is shown by studying well-defined geometric shapes as well as actual biological cells from plant and animal tissues. LOCO-EFA provides a tool to phenotype efficiently and objectively populations of cells, here demonstrated by applying it to the complex shaped pavement cells of Arabidopsis thaliana wild-type and speechless leaves, and Drosophila amnioserosa cells. To validate our method's applicability to large populations, we analysed computer-generated tissues. By controlling in silico cell shape, we explored the potential impact of cell packing on individual cell shape, quantifying through LOCO-EFA deviations between the specified shape of single cells in isolation and the resultant shape when they interact within a confluent tissue.


Assuntos
Forma Celular , Análise de Fourier , Morfogênese , Animais , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Simulação por Computador , Drosophila/citologia , Processamento de Imagem Assistida por Computador/métodos , Fenótipo , Células Vegetais , Folhas de Planta/citologia
2.
PLoS Biol ; 16(11): e2005952, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30383040

RESUMO

A developing plant organ exhibits complex spatiotemporal patterns of growth, cell division, cell size, cell shape, and organ shape. Explaining these patterns presents a challenge because of their dynamics and cross-correlations, which can make it difficult to disentangle causes from effects. To address these problems, we used live imaging to determine the spatiotemporal patterns of leaf growth and division in different genetic and tissue contexts. In the simplifying background of the speechless (spch) mutant, which lacks stomatal lineages, the epidermal cell layer exhibits defined patterns of division, cell size, cell shape, and growth along the proximodistal and mediolateral axes. The patterns and correlations are distinctive from those observed in the connected subepidermal layer and also different from the epidermal layer of wild type. Through computational modelling we show that the results can be accounted for by a dual control model in which spatiotemporal control operates on both growth and cell division, with cross-connections between them. The interactions between resulting growth and division patterns lead to a dynamic distributions of cell sizes and shapes within a deforming leaf. By modulating parameters of the model, we illustrate how phenotypes with correlated changes in cell size, cell number, and organ size may be generated. The model thus provides an integrated view of growth and division that can act as a framework for further experimental study.


Assuntos
Divisão Celular/fisiologia , Proliferação de Células/fisiologia , Desenvolvimento Vegetal/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Tamanho Celular , Regulação da Expressão Gênica de Plantas/genética , Modelos Biológicos , Folhas de Planta/crescimento & desenvolvimento , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Análise Espaço-Temporal
3.
Development ; 144(23): 4386-4397, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29084800

RESUMO

D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Fenômenos Biomecânicos , Divisão Celular , Genes de Plantas , Mitose , Modelos Biológicos , Mutação , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/crescimento & desenvolvimento , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
4.
Biol Direct ; 18(1): 84, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062477

RESUMO

BACKGROUND: Alström syndrome (ALMS) is a rare autosomal recessive disease that is associated with mutations in ALMS1 gene. The main clinical manifestations of ALMS are retinal dystrophy, obesity, type 2 diabetes mellitus, dilated cardiomyopathy and multi-organ fibrosis, characteristic in kidneys and liver. Depletion of the protein encoded by ALMS1 has been associated with the alteration of different processes regulated via the primary cilium, such as the NOTCH or TGF-ß signalling pathways. However, the cellular impact of these deregulated pathways in the absence of ALMS1 remains unknown. METHODS: In this study, we integrated RNA-seq and proteomic analysis to determine the gene expression profile of hTERT-BJ-5ta ALMS1 knockout fibroblasts after TGF-ß stimulation. In addition, we studied alterations in cross-signalling between the TGF-ß pathway and the AKT pathway in this cell line. RESULTS: We found that ALMS1 depletion affects the TGF-ß pathway and its cross-signalling with other pathways such as PI3K/AKT, EGFR1 or p53. In addition, alterations associated with ALMS1 depletion clustered around the processes of extracellular matrix regulation and lipid metabolism in both the transcriptome and proteome. By studying the enriched pathways of common genes differentially expressed in the transcriptome and proteome, collagen fibril organisation, ß-oxidation of fatty acids and eicosanoid metabolism emerged as key processes altered by the absence of ALMS1. Finally, an overactivation of the AKT pathway was determined in the absence of ALMS1 that could be explained by a decrease in PTEN gene expression. CONCLUSION: ALMS1 deficiency disrupts cross-signalling between the TGF-ß pathway and other dependent pathways in hTERT-BJ-5ta cells. Furthermore, altered cross-signalling impacts the regulation of extracellular matrix-related processes and fatty acid metabolism, and leads to over-activation of the AKT pathway.


Assuntos
Síndrome de Alstrom , Diabetes Mellitus Tipo 2 , Humanos , Metabolismo dos Lipídeos , Diabetes Mellitus Tipo 2/metabolismo , Proteoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt , Proteínas de Ciclo Celular/metabolismo , Síndrome de Alstrom/genética , Síndrome de Alstrom/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Matriz Extracelular/metabolismo
5.
Elife ; 102021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34723792

RESUMO

During organ development, tubular organs often form from flat epithelial primordia. In the placodes of the forming tubes of the salivary glands in the Drosophila embryo, we previously identified spatially defined cell behaviors of cell wedging, tilting, and cell intercalation that are key to the initial stages of tube formation. Here, we address what the requirements are that ensure the continuous formation of a narrow symmetrical tube from an initially asymmetrical primordium whilst overall tissue geometry is constantly changing. We are using live-imaging and quantitative methods to compare wild-type placodes and mutants that either show disrupted cell behaviors or an initial symmetrical placode organization, with both resulting in severe impairment of the invagination. We find that early transcriptional patterning of key morphogenetic transcription factors drives the selective activation of downstream morphogenetic modules, such as GPCR signaling that activates apical-medial actomyosin activity to drive cell wedging at the future asymmetrically placed invagination point. Over time, transcription of key factors expands across the rest of the placode and cells switch their behavior from predominantly intercalating to predominantly apically constricting as their position approaches the invagination pit. Misplacement or enlargement of the initial invagination pit leads to early problems in cell behaviors that eventually result in a defective organ shape. Our work illustrates that the dynamic patterning of the expression of transcription factors and downstream morphogenetic effectors ensures positionally fixed areas of cell behavior with regards to the invagination point. This patterning in combination with the asymmetric geometrical setup ensures functional organ formation.


Assuntos
Drosophila/embriologia , Embrião não Mamífero/metabolismo , Morfogênese , Animais , Embrião não Mamífero/citologia , Desenvolvimento Embrionário , Glândulas Salivares/citologia , Glândulas Salivares/embriologia
6.
Front Oncol ; 11: 666829, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996595

RESUMO

Acute Myeloid Leukaemia (AML) is a phenotypically and genetically heterogenous blood cancer characterised by very poor prognosis, with disease relapse being the primary cause of treatment failure. AML heterogeneity arise from different genetic and non-genetic sources, including its proposed hierarchical structure, with leukemic stem cells (LSCs) and progenitors giving origin to a variety of more mature leukemic subsets. Recent advances in single-cell molecular and phenotypic profiling have highlighted the intra and inter-patient heterogeneous nature of AML, which has so far limited the success of cell-based immunotherapy approaches against single targets. Machine Learning (ML) can be uniquely used to find non-trivial patterns from high-dimensional datasets and identify rare sub-populations. Here we review some recent ML tools that applied to single-cell data could help disentangle cell heterogeneity in AML by identifying distinct core molecular signatures of leukemic cell subsets. We discuss the advantages and limitations of unsupervised and supervised ML approaches to cluster and classify cell populations in AML, for the identification of biomarkers and the design of personalised therapies.

7.
Curr Opin Cell Biol ; 55: 104-110, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30029038

RESUMO

One of the most fascinating aspects of development is the complexity and diversity of tissues and organs that are formed from simple primordia, involving complex coordination between large groups of cells. Lack of coordination leads to developmental defects and failure in organ formation. The simple primordia are often polarised epithelial sheets, with cells connected to neighbours apically via Cadherin-based cell-cell junctions that intracellularly link to the cytoskeleton. Coordination of cells in epithelia during morphogenesis occurs in part at these junctions. Furthermore, in many tissues a striking supracellular order and alignment of cytoskeletal structures can be observed, likely playing an important part in the coordination of cells. Here, we will introduce examples of morphogenetic events where this supracellular order of the cytoskeleton is very apparent and will discuss recent advances in understanding the generation and function of this order.


Assuntos
Citoesqueleto/metabolismo , Especificidade de Órgãos , Organogênese , Actomiosina/metabolismo , Animais , Epitélio/metabolismo , Humanos , Microtúbulos/metabolismo
8.
Elife ; 72018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30015616

RESUMO

The budding of tubular organs from flat epithelial sheets is a vital morphogenetic process. Cell behaviours that drive such processes are only starting to be unraveled. Using live-imaging and novel morphometric methods, we show that in addition to apical constriction, radially oriented directional intercalation of cells plays a major contribution to early stages of invagination of the salivary gland tube in the Drosophila embryo. Extending analyses in 3D, we find that near the pit of invagination, isotropic apical constriction leads to strong cell-wedging. Further from the pit cells interleave circumferentially, suggesting apically driven behaviours. Supporting this, junctional myosin is enriched in, and neighbour exchanges are biased towards the circumferential orientation. In a mutant failing pit specification, neither are biased due to an inactive pit. Thus, tube budding involves radially patterned pools of apical myosin, medial as well as junctional, and radially patterned 3D-cell behaviours, with a close mechanical interplay between invagination and intercalation.


Assuntos
Células Epiteliais/citologia , Epitélio/embriologia , Morfogênese , Animais , Polaridade Celular , Forma Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Embrião não Mamífero , Epitélio/metabolismo , Fluorescência , Imageamento Tridimensional , Mutação/genética , Miosina Tipo II/metabolismo , Glândulas Salivares/embriologia , Imagem com Lapso de Tempo
9.
Arabidopsis Book ; 8: e0127, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22303253

RESUMO

Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA