Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768622

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a catastrophic, ultra-rare disease of heterotopic ossification caused by genetic defects in the ACVR1 gene. The mutant ACVR1 receptor, when triggered by an inflammatory process, leads to heterotopic ossification of the muscles and ligaments. Activin A has been discovered as the main osteogenic ligand of the FOP ACVR1 receptor. However, the source of Activin A itself and the trigger of its production in FOP individuals have remained elusive. We used primary dermal fibroblasts from five FOP patients to investigate Activin A production and how this is influenced by inflammatory cytokines in FOP. FOP fibroblasts showed elevated Activin A production compared to healthy controls, both in standard culture and osteogenic transdifferentiation conditions. We discovered TGFß1 to be an FOP-specific stimulant of Activin A, shown by the upregulation of the INHBA gene and protein expression. Activin A and TGFß1 were both induced by BMP4 in FOP and control fibroblasts. Treatment with TNFα and IL6 produced negligible levels of Activin A and TGFß1 in both cell groups. We present for the first time TGFß1 as a triggering factor of Activin A production in FOP. As TGFß1 can promote the induction of the main driver of FOP, TGFß1 could also be considered a possible therapeutic target in FOP treatment.


Assuntos
Miosite Ossificante , Ossificação Heterotópica , Humanos , Miosite Ossificante/genética , Miosite Ossificante/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais/genética , Ossificação Heterotópica/genética , Fibroblastos/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Mutação
2.
J Pathol ; 255(3): 330-342, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34357595

RESUMO

Chondrocytes in mice developing osteoarthritis (OA) exhibit an aberrant response to the secreted cytokine transforming growth factor (TGF)-ß, consisting in a potentiation of intracellular signaling downstream of the transmembrane type I receptor kinase activin receptor-like kinase (ALK)1 against canonical TGF-ß receptor ALK5-mediated signaling. Unfortunately, the underlying mechanisms remain elusive. In order to identify novel druggable targets for OA, we aimed to investigate novel molecules regulating the ALK1/ALK5 balance in OA chondrocytes. We performed gene expression analysis of TGF-ß signaling modulators in joints from three different mouse models of OA and found an upregulated expression of the TGF-ß co-receptor Cripto (Tdgf1), which was validated in murine and human cartilage OA samples at the protein level. In vitro and ex vivo, elevated expression of Cripto favors the hypertrophic differentiation of chondrocytes, eventually contributing to tissue calcification. Furthermore, we found that Cripto participates in a TGF-ß-ALK1-Cripto receptor complex in the plasma membrane, thereby inducing catabolic SMAD1/5 signaling in chondrocytes. In conclusion, we demonstrate that Cripto is expressed in OA and plays a functional role promoting chondrocyte hypertrophy, thereby becoming a novel potential therapeutic target in OA, for which there is no efficient cure or validated biomarker. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Condrócitos/patologia , Proteínas Ligadas por GPI/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Neoplasias/metabolismo , Osteoartrite/patologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Fator de Crescimento Epidérmico/metabolismo , Humanos , Hipertrofia/patologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Transdução de Sinais/fisiologia
3.
Angiogenesis ; 23(4): 699-714, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32813135

RESUMO

Imbalanced transforming growth factor beta (TGFß) and bone morphogenetic protein (BMP) signaling are postulated to favor a pathological pulmonary endothelial cell (EC) phenotype in pulmonary arterial hypertension (PAH). BMP9 is shown to reinstate BMP receptor type-II (BMPR2) levels and thereby mitigate hemodynamic and vascular abnormalities in several animal models of pulmonary hypertension (PH). Yet, responses of the pulmonary endothelium of PAH patients to BMP9 are unknown. Therefore, we treated primary PAH patient-derived and healthy pulmonary ECs with BMP9 and observed that stimulation induces transient transcriptional signaling associated with the process of endothelial-to-mesenchymal transition (EndMT). However, solely PAH pulmonary ECs showed signs of a mesenchymal trans-differentiation characterized by a loss of VE-cadherin, induction of transgelin (SM22α), and reorganization of the cytoskeleton. In the PAH cells, a prolonged EndMT signaling was found accompanied by sustained elevation of pro-inflammatory, pro-hypoxic, and pro-apoptotic signaling. Herein we identified interleukin-6 (IL6)-dependent signaling to be the central mediator required for the BMP9-induced phenotypic change in PAH pulmonary ECs. Furthermore, we were able to target the BMP9-induced EndMT process by an IL6 capturing antibody that normalized autocrine IL6 levels, prevented mesenchymal transformation, and maintained a functional EC phenotype in PAH pulmonary ECs. In conclusion, our results show that the BMP9-induced aberrant EndMT in PAH pulmonary ECs is dependent on exacerbated pro-inflammatory signaling mediated through IL6.


Assuntos
Células Endoteliais/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Pulmão/patologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Transdução de Sinais , Adulto , Idoso , Endotélio Vascular/patologia , Feminino , Homeostase , Humanos , Interleucina-6/metabolismo , Masculino , Microvasos/patologia , Pessoa de Meia-Idade , Testes de Neutralização , Fenótipo , Hipertensão Arterial Pulmonar/genética , Transcrição Gênica
4.
J Pathol ; 247(1): 9-20, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30246251

RESUMO

Bone morphogenetic proteins (BMPs) are secreted cytokines that were initially discovered on the basis of their ability to induce bone. Several decades of research have now established that these proteins function in a large variety of physiopathological processes. There are about 15 BMP family members, which signal via three transmembrane type II receptors and four transmembrane type I receptors. Mechanistically, BMP binding leads to phosphorylation of the type I receptor by the type II receptor. This activated heteromeric complex triggers intracellular signaling that is initiated by phosphorylation of receptor-regulated SMAD1, 5, and 8 (also termed R-SMADs). Activated R-SMADs form heteromeric complexes with SMAD4, which engage in specific transcriptional responses. There is convergence along the signaling pathway and, besides the canonical SMAD pathway, BMP-receptor activation can also induce non-SMAD signaling. Each step in the pathway is fine-tuned by positive and negative regulation and crosstalk with other signaling pathways. For example, ligand bioavailability for the receptor can be regulated by ligand-binding proteins that sequester the ligand from interacting with receptors. Accessory co-receptors, also known as BMP type III receptors, lack intrinsic enzymatic activity but enhance BMP signaling by presenting ligands to receptors. In this review, we discuss the role of BMP receptor signaling and how corruption of this pathway contributes to cardiovascular and musculoskeletal diseases and cancer. We describe pharmacological tools to interrogate the function of BMP receptor signaling in specific biological processes and focus on how these agents can be used as drugs to inhibit or activate the function of the receptor, thereby normalizing dysregulated BMP signaling. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Musculoesqueléticas/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Animais , Receptores de Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Humanos , Ligantes , Doenças Musculoesqueléticas/genética , Doenças Musculoesqueléticas/patologia , Doenças Musculoesqueléticas/fisiopatologia , Neoplasias/genética , Neoplasias/patologia , Neoplasias/fisiopatologia , Fosforilação , Proteínas Smad Reguladas por Receptor/metabolismo
5.
J Pathol ; 247(3): 333-346, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30430573

RESUMO

Endothelial-to-mesenchymal transition (EndMT) has been unveiled as a common cause for a multitude of human pathologies, including cancer and cardiovascular disease. Vascular calcification is a risk factor for ischemic vascular disorders and slowing calcification may reduce mortality in affected patients. The absence of early biomarkers hampers the identification of patients at risk. EndMT and vascular calcification are induced upon cooperation between distinct stimuli, including inflammatory cytokines and transforming growth factor beta (TGF-ß) family members. However, how these signaling pathways interplay to promote cell differentiation and eventually vascular calcification is not well understood. Using in vitro and ex vivo analysis in animal models and patient-derived tissues, we have identified that the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1ß) induce EndMT in human primary aortic endothelial cells, thereby sensitizing them for BMP-9-induced osteogenic differentiation. Downregulation of the BMP type II receptor BMPR2 is a key event in this process. Rather than compromising BMP canonical signal transduction, loss of BMPR2 results in decreased JNK signaling in ECs, thus enhancing BMP-9-induced mineralization. Altogether, our results point at the BMPR2-JNK signaling axis as a key pathway regulating inflammation-induced EndMT and contributing to calcification. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Calcificação Vascular/fisiopatologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Células Endoteliais/fisiologia , Endotélio Vascular/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Mediadores da Inflamação/farmacologia , Interleucina-1beta/farmacologia , Camundongos Endogâmicos C3H , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Calcificação Vascular/patologia
6.
Angiogenesis ; 22(1): 3-13, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30076548

RESUMO

Endothelial cells (ECs) have been found to be capable of acquiring a mesenchymal phenotype through a process known as endothelial-to-mesenchymal transition (EndMT). First seen in the developing embryo, EndMT can be triggered postnatally under certain pathological conditions. During this process, ECs dedifferentiate into mesenchymal stem-like cells (MSCs) and subsequently give rise to cell types belonging to the mesoderm lineage. As EndMT contributes to a multitude of diseases, pharmacological modulation of the signaling pathways underlying EndMT may prove to be effective as a therapeutic treatment. Additionally, EndMT in ECs could also be exploited to acquire multipotent MSCs, which can be readily re-differentiated into various distinct cell types. In this review, we will consider current models of EndMT, how manipulation of this process might improve treatment of clinically important pathologies and how it could be harnessed to advance regenerative medicine and tissue engineering.


Assuntos
Embrião de Mamíferos/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mesoderma/metabolismo , Modelos Biológicos , Transdução de Sinais , Doenças Vasculares/embriologia , Animais , Linhagem da Célula , Embrião de Mamíferos/patologia , Células Endoteliais/patologia , Humanos , Células-Tronco Mesenquimais/patologia , Mesoderma/patologia , Doenças Vasculares/patologia
7.
Int J Mol Sci ; 20(13)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269711

RESUMO

Bicuspid aortic valve (BAV), the most common congenital heart defect, is associated with an increased prevalence of aortic dilation, aortic rupture and aortic valve calcification. Endothelial cells (ECs) play a major role in vessel wall integrity. Little is known regarding EC function in BAV patients due to lack of patient derived primary ECs. Endothelial colony forming cells (ECFCs) have been reported to be a valid surrogate model for several cardiovascular pathologies, thereby facilitating an in vitro system to assess patient-specific endothelial dysfunction. Therefore, the aim of this study was to investigate cellular functions in ECFCs isolated from BAV patients. Outgrowth and proliferation of ECFCs from patients with BAV (n = 34) and controls with a tricuspid aortic valve (TAV, n = 10) were determined and related to patient characteristics. Interestingly, we were only able to generate ECFCs from TAV and BAV patients without aortic dilation, and failed to isolate ECFC colonies from patients with a dilated aorta. Analyzing EC function showed that while proliferation, cell size and endothelial-to-mesenchymal transition were similar in TAV and BAV ECFCs, migration and the wound healing capacity of BAV ECFCs is significantly higher compared to TAV ECFCs. Furthermore, calcification is blunted in BAV compared to TAV ECFCs. Our results reveal ECs dysfunction in BAV patients and future research is required to unravel the underlying mechanisms and to further validate ECFCs as a patient-specific in vitro model for BAV.


Assuntos
Valva Aórtica/anormalidades , Células Endoteliais/patologia , Doenças das Valvas Cardíacas/patologia , Adulto , Aorta/patologia , Valva Aórtica/patologia , Doença da Válvula Aórtica Bicúspide , Movimento Celular , Tamanho Celular , Células Cultivadas , Dilatação Patológica/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Dev Dyn ; 247(3): 492-508, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28891150

RESUMO

The process named endothelial-to-mesenchymal transition (EndMT) was observed for the first time during the development of the chicken embryo several decades ago. Of interest, accumulating evidence suggests that EndMT plays a critical role in the onset and progression of multiple postnatal cardiovascular diseases. EndMT is controlled by a set of developmental signaling pathways, very similar to the process of epithelial-to-mesenchymal transition, which determine the activity of several EndMT transcriptional effectors. Once activated, these EndMT effectors regulate the expression of endothelial- and mesenchymal-specific genes, in part by interacting with specific motifs in promoter regions, eventually leading to the down-regulation of endothelial-specific features and acquisition of a fibroblast-like phenotype. Important technical advances in lineage tracing methods combined with experimental mouse models demonstrated the pathophysiological importance of EndMT for human diseases. In this review, we discuss the major signal transduction pathways involved in the activation and regulation of the EndMT program. Furthermore, we will review the latest discoveries on EndMT, focusing on cardiovascular diseases, and in particular on its role in vascular calcification, pulmonary arterial hypertension, and organ fibrosis. Developmental Dynamics 247:492-508, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Células Endoteliais/patologia , Células-Tronco Mesenquimais/patologia , Transdução de Sinais/fisiologia , Animais , Calcinose/etiologia , Fibrose/etiologia , Humanos
9.
J Pathol ; 238(3): 378-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26446982

RESUMO

Recent evidence has highlighted the role of endothelial-to-mesenchymal transition (EndoMT) in the onset and progression of a number of human pathologies. EndoMT involves the loss of an endothelial signature to generate unspecialized mesenchymal-like cells, susceptible to being re-differentiated into mesodermal cell types, including osteoblasts, chondrocytes, and adipocytes. Therefore, modulation of the molecular pathways controlling EndoMT can be considered as a therapeutic approach for particular human diseases. In addition, EndoMT may be harnessed for tissue engineering by producing multipotent mesenchymal cells able to differentiate into mutiple cell types.


Assuntos
Transdiferenciação Celular/fisiologia , Células Endoteliais/patologia , Mesoderma/patologia , Animais , Humanos , Camundongos , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo , beta Catenina/metabolismo
10.
Int J Mol Sci ; 18(10)2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29039786

RESUMO

Fibrotic diseases are characterized by net accumulation of extracellular matrix proteins in affected organs leading to their dysfunction and ultimate failure. Myofibroblasts have been identified as the cells responsible for the progression of the fibrotic process, and they originate from several sources, including quiescent tissue fibroblasts, circulating CD34⁺ fibrocytes and the phenotypic conversion of various cell types into activated myofibroblasts. Several studies have demonstrated that endothelial cells can transdifferentiate into mesenchymal cells through a process termed endothelial- mesenchymal transition (EndMT) and that this can give rise to activated myofibroblasts involved in the development of fibrotic diseases. Transforming growth factor ß (TGF-ß) has a central role in fibrogenesis by modulating the fibroblast phenotype and function, inducing myofibroblast transdifferentiation and promoting matrix accumulation. In addition, TGF-ß by inducing EndMT may further contribute to the development of fibrosis. Despite extensive investigation of the pathogenesis of fibrotic diseases, no effective treatment strategies are available. Delineation of the mechanisms responsible for initiation and progression of fibrotic diseases is crucial for the development of therapeutic strategies for the treatment of the disease. In this review, we summarize the role of the TGF-ß signaling pathway and EndMT in the development of fibrotic diseases and discuss their therapeutic potential.


Assuntos
Transição Epitelial-Mesenquimal , Fibrose/etiologia , Fibrose/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Biomarcadores , Transdiferenciação Celular , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrose/diagnóstico , Humanos , Miofibroblastos/metabolismo , Transdução de Sinais
11.
Arterioscler Thromb Vasc Biol ; 35(3): 616-27, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25633317

RESUMO

OBJECTIVE: Arterial calcification is considered a major cause of death and disabilities worldwide because the associated vascular remodeling leads to myocardial infarction, stroke, aneurysm, and pulmonary embolism. This process occurs via poorly understood mechanisms involving a variety of cell types, intracellular mediators, and extracellular cues within the vascular wall. An inverse correlation between endothelial primary cilia and vascular calcified areas has been described although the signaling mechanisms involved remain unknown. We aim to investigate the signaling pathways regulated by the primary cilium that modulate the contribution of endothelial cells to vascular calcification. APPROACH AND RESULTS: We found that human and murine endothelial cells lacking primary cilia are prone to undergo mineralization in response to bone morphogenetic proteins stimulation in vitro. Using the Tg737(orpk/orpk) cillium-defective mouse model, we show that nonciliated aortic endothelial cells acquire the ability to transdifferentiate into mineralizing osteogenic cells, in a bone morphogenetic protein-dependent manner. We identify ß-CATENIN-induced SLUG as a key transcription factor controlling this process. Moreover, we show that the endothelial expression of SLUG is restricted to atheroprone areas in the aorta of LDLR(-/-) mice. Finally, we demonstrate that SLUG and phospho-homolog of the Drosophila protein, mothers against decapentaplegic (MAD) and the Caenorhabditis elegans protein SMA (from gene sma for small body size)-1/5/8 expression increases in endothelial cells constituting the vasa vasorum in the human aorta during the progression toward atherosclerosis. CONCLUSIONS: We demonstrated that the lack of primary cilia sensitizes the endothelium to undergo bone morphogenetic protein-dependent-osteogenic differentiation. These data emphasize the role of the endothelial cells on the vascular calcification and uncovers SLUG as a key target in atherosclerosis.


Assuntos
Doenças da Aorta/metabolismo , Células Endoteliais/metabolismo , Fatores de Transcrição/metabolismo , Calcificação Vascular/metabolismo , Animais , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Proteínas Morfogenéticas Ósseas/metabolismo , Transdiferenciação Celular , Células Cultivadas , Cílios , Modelos Animais de Doenças , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Knockout , Camundongos Mutantes , Mutação , Osteoblastos/metabolismo , Osteogênese , Fosforilação , Receptores de LDL/deficiência , Receptores de LDL/genética , Transdução de Sinais , Proteínas Smad Reguladas por Receptor/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Transfecção , Proteínas Supressoras de Tumor/genética , Calcificação Vascular/genética , Calcificação Vascular/patologia , beta Catenina/metabolismo
12.
Hum Reprod Update ; 30(4): 442-471, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38519450

RESUMO

BACKGROUND: The placenta is a unique and pivotal organ in reproduction, controlling crucial growth and cell differentiation processes that ensure a successful pregnancy. Placental development is a tightly regulated and dynamic process, in which the transforming growth factor beta (TGFß) superfamily plays a central role. This family of pleiotropic growth factors is heavily involved in regulating various aspects of reproductive biology, particularly in trophoblast differentiation during the first trimester of pregnancy. TGFß signalling precisely regulates trophoblast invasion and the cell transition from cytotrophoblasts to extravillous trophoblasts, which is an epithelial-to-mesenchymal transition-like process. Later in pregnancy, TGFß signalling ensures proper vascularization and angiogenesis in placental endothelial cells. Beyond its role in trophoblasts and endothelial cells, TGFß signalling contributes to the polarization and function of placental and decidual macrophages by promoting maternal tolerance of the semi-allogeneic foetus. Disturbances in early placental development have been associated with several pregnancy complications, including preeclampsia (PE) which is one of the severe complications. Emerging evidence suggests that TGFß is involved in the pathogenesis of PE, thereby offering a potential target for intervention in the human placenta. OBJECTIVE AND RATIONALE: This comprehensive review aims to explore and elucidate the roles of the major members of the TGFß superfamily, including TGFßs, bone morphogenetic proteins (BMPs), activins, inhibins, nodals, and growth differentiation factors (GDFs), in the context of placental development and function. The review focusses on their interactions within the major cell types of the placenta, namely trophoblasts, endothelial cells, and immune cells, in both normal pregnancies and pregnancies complicated by PE throughout pregnancy. SEARCH METHODS: A literature search was carried out using PubMed and Google Scholar, searching terms: 'TGF signalling preeclampsia', 'pregnancy TGF signalling', 'preeclampsia tgfß', 'preeclampsia bmp', 'preeclampsia gdf', 'preeclampsia activin', 'endoglin preeclampsia', 'endoglin pregnancy', 'tgfß signalling pregnancy', 'bmp signalling pregnancy', 'gdf signalling pregnancy', 'activin signalling pregnancy', 'Hofbauer cell tgfß signalling', 'placental macrophages tgfß', 'endothelial cells tgfß', 'endothelium tgfß signalling', 'trophoblast invasion tgfß signalling', 'trophoblast invasion Smad', 'trophoblast invasion bmp', 'trophoblast invasion tgfß', 'tgfß preeclampsia', 'tgfß placental development', 'TGFß placental function', 'endothelial dysfunction preeclampsia tgfß signalling', 'vascular remodelling placenta TGFß', 'inflammation pregnancy tgfß', 'immune response pregnancy tgfß', 'immune tolerance pregnancy tgfß', 'TGFß pregnancy NK cells', 'bmp pregnancy NK cells', 'bmp pregnancy tregs', 'tgfß pregnancy tregs', 'TGFß placenta NK cells', 'TGFß placenta tregs', 'NK cells preeclampsia', 'Tregs preeclampsia'. Only articles published in English until 2023 were used. OUTCOMES: A comprehensive understanding of TGFß signalling and its role in regulating interconnected cell functions of the main placental cell types provides valuable insights into the processes essential for successful placental development and growth of the foetus during pregnancy. By orchestrating trophoblast invasion, vascularization, immune tolerance, and tissue remodelling, TGFß ligands contribute to the proper functioning of a healthy maternal-foetal interface. However, dysregulation of TGFß signalling has been implicated in the pathogenesis of PE, where the shallow trophoblast invasion, defective vascular remodelling, decreased uteroplacental perfusion, and endothelial cell and immune dysfunction observed in PE, are all affected by an altered TGFß signalling. WIDER IMPLICATIONS: The dysregulation of TGFß signalling in PE has important implications for research and clinical practice. Further investigation is required to understand the underlying mechanisms, including the role of different ligands and their regulation under pathophysiological conditions, in order to discover new therapeutic targets. Distinguishing between clinically manifested subtypes of PE and studying TGFß signalling in different placental cell types holistically is an important first step. To put this knowledge into practice, pre-clinical animal models combined with new technologies are needed. This may also lead to improved human research models and identify potential therapeutic targets, ultimately improving outcomes for affected pregnancies and reducing the burden of PE.


Assuntos
Inflamação , Placenta , Pré-Eclâmpsia , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Gravidez , Feminino , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Fator de Crescimento Transformador beta/metabolismo , Placenta/metabolismo , Inflamação/metabolismo , Trofoblastos/metabolismo , Trofoblastos/fisiologia , Placentação/fisiologia
13.
J Virol ; 86(7): 3795-808, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22258251

RESUMO

Although highly active antiretroviral therapy (HAART) has converted HIV into a chronic disease, a reservoir of HIV latently infected resting T cells prevents the eradication of the virus from patients. To achieve eradication, HAART must be combined with drugs that reactivate the dormant viruses. We examined this problem in an established model of HIV postintegration latency by screening a library of small molecules. Initially, we identified eight molecules that reactivated latent HIV. Using them as templates, additional hits were identified by means of similarity-based virtual screening. One of those hits, 8-methoxy-6-methylquinolin-4-ol (MMQO), proved to be useful to reactivate HIV-1 in different cellular models, especially in combination with other known reactivating agents, without causing T-cell activation and with lower toxicity than that of the initial hits. Interestingly, we have established that MMQO produces Jun N-terminal protein kinase (JNK) activation and enhances the T-cell receptor (TCR)/CD3 stimulation of HIV-1 reactivation from latency but inhibits CD3-induced interleukin-2 (IL-2) and tumor necrosis factor alpha (TNF-α) gene transcription. Moreover, MMQO prevents TCR-induced cell cycle progression and proliferation in primary T cells. The present study documents that the combination of biological screening in a cellular model of viral latency with virtual screening is useful for the identification of novel agents able to reactivate HIV-1. Moreover, we set the bases for a hypothetical therapy to reactivate latent HIV by combining MMQO with physiological or pharmacological TCR/CD3 stimulation.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Infecções por HIV/virologia , HIV-1/fisiologia , Bibliotecas de Moléculas Pequenas/farmacologia , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Proliferação de Células/efeitos dos fármacos , Infecções por HIV/imunologia , Infecções por HIV/fisiopatologia , HIV-1/efeitos dos fármacos , Humanos
14.
J Nat Prod ; 76(6): 1105-12, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23742639

RESUMO

The dietary phenolic curcumin (1a) is the archetypal network pharmacological agent, but is characterized by an ill-defined pharmacophore. Nevertheless, structure-activity studies of 1a have mainly focused on a single biological end-point and on a single structural element, the aliphatic bis-enoyl moiety. The comparative investigation of more than one end-point of curcumin and the modification of its aromatic region have been largely overlooked. To address these issues, we have investigated the effect of aromatic C-prenylation in the three archetypal structural types of curcuminoids, namely, curcumin itself (1a), its truncated analogue 2a (C5-curcumin), and (as the reduced isoamyl version) the tetrahydro derivative 3a, comparatively evaluating reactivity with thiols and activity in biochemical (inhibition of NF-κB, HIV-1-Tat transactivation, Nrf2 activation) and phenotypic (anti-HIV action) assays sensitive, to a various extent, to thia-Michael addition. Prenylation, a validated maneuver for bioactivity modulation in plant phenolics, had no effect on Michael reactivity, but was detrimental for all biological end-points investigated, dissecting thiol trapping from activity, while hydrogenation attenuated, but did not completely abrogate, the activity of 1a. The C5-curcuminoid 2a outperformed the natural product in all end-points investigated and was identified as a novel high-potency anti-HIV lead in a cellular model of HIV infection. Taken together, these observations show that Michael reactivity is a critical element of the curcumin pharmacophore, but also reveal a surprising sensitivity of bioactivity to C-prenylation of the vanillyl moiety.


Assuntos
Curcumina , Curcumina/análogos & derivados , Curcumina/química , Curcumina/farmacologia , HIV-1/efeitos dos fármacos , Estrutura Molecular , NF-kappa B , Relação Estrutura-Atividade
15.
Cells ; 12(17)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37681932

RESUMO

Disturbances in bone morphogenetic protein (BMP) signalling contribute to onset and development of a number of rare genetic diseases, including Fibrodysplasia ossificans progressiva (FOP), Pulmonary arterial hypertension (PAH), and Hereditary haemorrhagic telangiectasia (HHT). After decades of animal research to build a solid foundation in understanding the underlying molecular mechanisms, the progressive implementation of iPSC-based patient-derived models will improve drug development by addressing drug efficacy, specificity, and toxicity in a complex humanized environment. We will review the current state of literature on iPSC-derived model systems in this field, with special emphasis on the access to patient source material and the complications that may come with it. Given the essential role of BMPs during embryonic development and stem cell differentiation, gain- or loss-of-function mutations in the BMP signalling pathway may compromise iPSC generation, maintenance, and differentiation procedures. This review highlights the need for careful optimization of the protocols used. Finally, we will discuss recent developments towards complex in vitro culture models aiming to resemble specific tissue microenvironments with multi-faceted cellular inputs, such as cell mechanics and ECM together with organoids, organ-on-chip, and microfluidic technologies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Feminino , Gravidez , Humanos , Doenças Raras , Proteínas Morfogenéticas Ósseas , Diferenciação Celular , Desenvolvimento de Medicamentos
16.
Cardiovasc Res ; 119(13): 2262-2277, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37595264

RESUMO

Pulmonary arterial hypertension (PAH) is a rare cardiovascular disorder leading to pulmonary hypertension and, often fatal, right heart failure. Sex differences in PAH are evident, which primarily presents with a female predominance and increased male severity. Disturbed signalling of the transforming growth factor-ß (TGFß) family and gene mutations in the bone morphogenetic protein receptor 2 (BMPR2) are risk factors for PAH development, but how sex-specific cues affect the TGFß family signalling in PAH remains poorly understood. In this review, we aim to explore the sex bias in PAH by examining sex differences in the TGFß signalling family through mechanistical and translational evidence. Sex hormones including oestrogens, progestogens, and androgens, can determine the expression of receptors (including BMPR2), ligands, and soluble antagonists within the TGFß family in a tissue-specific manner. Furthermore, sex-related genetic processes, i.e. Y-chromosome expression and X-chromosome inactivation, can influence the TGFß signalling family at multiple levels. Given the clinical and mechanistical similarities, we expect that the conclusions arising from this review may apply also to hereditary haemorrhagic telangiectasia (HHT), a rare vascular disorder affecting the TGFß signalling family pathway. In summary, we anticipate that investigating the TGFß signalling family in a sex-specific manner will contribute to further understand the underlying processes leading to PAH and likely HHT.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Feminino , Masculino , Humanos , Fator de Crescimento Transformador beta/metabolismo , Hipertensão Pulmonar Primária Familiar , Transdução de Sinais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo
17.
J Vis Exp ; (168)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33720132

RESUMO

In response to specific external cues and the activation of certain transcription factors, endothelial cells can differentiate into a mesenchymal-like phenotype, a process that is termed endothelial to mesenchymal transition (EndMT). Emerging results have suggested that EndMT is causally linked to multiple human diseases, such as fibrosis and cancer. In addition, endothelial-derived mesenchymal cells may be applied in tissue regeneration procedures, as they can be further differentiated into various cell types (e.g., osteoblasts and chondrocytes). Thus, the selective manipulation of EndMT may have clinical potential. Like epithelial-mesenchymal transition (EMT), EndMT can be strongly induced by the secreted cytokine transforming growth factor-beta (TGF-ß), which stimulates the expression of so-called EndMT transcription factors (EndMT-TFs), including Snail and Slug. These EndMT-TFs then up- and downregulate the levels of mesenchymal and endothelial proteins, respectively. Here, we describe methods to investigate TGF-ß-induced EndMT in vitro, including a protocol to study the role of particular TFs in TGF-ß-induced EndMT. Using these techniques, we provide evidence that TGF-ß2 stimulates EndMT in murine pancreatic microvascular endothelial cells (MS-1 cells), and that the genetic depletion of Snail using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated gene editing, abrogates this phenomenon. This approach may serve as a model to interrogate potential modulators of endothelial biology, and can be used to perform genetic or pharmacological screens in order to identify novel regulators of EndMT, with potential application in human disease.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Células Endoteliais/metabolismo , Edição de Genes , Mesoderma/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular , Fatores de Crescimento Endotelial/genética , Fatores de Crescimento Endotelial/metabolismo , Imunofluorescência , Camundongos , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta/genética
18.
Cancers (Basel) ; 13(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204675

RESUMO

Angiogenesis, i.e., the formation of new blood vessels from pre-existing endothelial cell (EC)-lined vessels, is critical for tissue development and also contributes to neovascularization-related diseases, such as cancer. Vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs) are among many secreted cytokines that regulate EC function. While several pharmacological anti-angiogenic agents have reached the clinic, further improvement is needed to increase clinical efficacy and to overcome acquired therapy resistance. More insights into the functional consequences of targeting specific pathways that modulate blood vessel formation may lead to new therapeutic approaches. Here, we synthesized and identified two macrocyclic small molecular compounds termed OD16 and OD29 that inhibit BMP type I receptor (BMPRI)-induced SMAD1/5 phosphorylation and downstream gene expression in ECs. Of note, OD16 and OD29 demonstrated higher specificity against BMPRI activin receptor-like kinase 1/2 (ALK1/2) than the commonly used small molecule BMPRI kinase inhibitor LDN-193189. OD29, but not OD16, also potently inhibited VEGF-induced extracellular regulated kinase MAP kinase phosphorylation in ECs. In vitro, OD16 and OD29 exerted strong inhibition of BMP9 and VEGF-induced ECs migration, invasion and cord formation. Using Tg (fli:EGFP) zebrafish embryos, we found that OD16 and OD29 potently antagonized dorsal longitudinal anastomotic vessel (DLAV), intra segmental vessel (ISV), and subintestinal vessel (SIV) formation during embryonic development. Moreover, the MDA-MB-231 breast cancer cell-induced tumor angiogenesis in zebrafish embryos was significantly decreased by OD16 and OD29. Both macrocyclic compounds might provide a steppingstone for the development of novel anti-angiogenesis therapeutic agents.

19.
Front Cell Dev Biol ; 9: 765007, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977017

RESUMO

The epicardium, the mesothelial layer covering the heart, is a crucial cell source for cardiac development and repair. It provides cells and biochemical signals to the heart to facilitate vascularization and myocardial growth. An essential element of epicardial behavior is epicardial epithelial to mesenchymal transition (epiMT), which is the initial step for epicardial cells to become motile and invade the myocardium. To identify targets to optimize epicardium-driven repair of the heart, it is vital to understand which pathways are involved in the regulation of epiMT. Therefore, we established a cell culture model for human primary adult and fetal epiMT, which allows for parallel testing of inhibitors and stimulants of specific pathways. Using this approach, we reveal Activin A and ALK4 signaling as novel regulators of epiMT, independent of the commonly accepted EMT inducer TGFß. Importantly, Activin A was able to induce epicardial invasion in cultured embryonic mouse hearts. Our results identify Activin A/ALK4 signaling as a modulator of epicardial plasticity which may be exploitable in cardiac regenerative medicine.

20.
Front Cell Dev Biol ; 9: 616610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644053

RESUMO

Endothelial-to-mesenchymal transition (EndMT) plays an important role in embryonic development and disease progression. Yet, how different members of the transforming growth factor-ß (TGF-ß) family regulate EndMT is not well understood. In the current study, we report that TGF-ß2, but not bone morphogenetic protein (BMP)9, triggers EndMT in murine endothelial MS-1 and 2H11 cells. TGF-ß2 strongly upregulates the transcription factor SNAIL, and the depletion of Snail is sufficient to abrogate TGF-ß2-triggered mesenchymal-like cell morphology acquisition and EndMT-related molecular changes. Although SLUG is not regulated by TGF-ß2, knocking out Slug also partly inhibits TGF-ß2-induced EndMT in 2H11 cells. Interestingly, in addition to SNAIL and SLUG, BMP9 stimulates inhibitor of DNA binding (ID) proteins. The suppression of Id1, Id2, or Id3 expression facilitated BMP9 in inducing EndMT and, in contrast, ectopic expression of ID1, ID2, or ID3 abrogated TGF-ß2-mediated EndMT. Altogether, our results show that SNAIL is critical and indispensable for TGF-ß2-mediated EndMT. Although SLUG is also involved in the EndMT process, it plays less of a crucial role in it. In contrast, ID proteins are essential for maintaining endothelial traits and repressing the function of SNAIL and SLUG during the EndMT process. These data suggest that the control over endothelial vs. mesenchymal cell states is determined, at least in part, by a balance between the expression of SNAIL/SLUG and ID proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA