RESUMO
Global vaccination against COVID-19 has been widely successful; however, there is a need for complementary immunotherapies in severe forms of the disease and in immunocompromised patients. Cytotoxic CD8+ T cells have a crucial role in disease control, but their function can be dysregulated in severe forms of the disease. We report here a cell-based approach using a plasmacytoid dendritic cell line (PDC*line) to expand in vitro specific CD8+ responses against COVID-19 Ags. We tested the immunogenicity of eight HLA-A*02:01 restricted peptides derived from diverse SARS-Cov-2 proteins, selected by bioinformatics analyses in unexposed and convalescent donors. Higher ex vivo frequencies of specific T cells against these peptides were found in convalescent donors compared with unexposed donors, suggesting in situ T cell expansion upon viral infection. The peptide-loaded PDC*line induced robust CD8+ responses with total amplification rates that led up to a 198-fold increase in peptide-specific CD8+ T cell frequencies for a single donor. Of note, six of eight selected peptides provided significant amplifications, all of which were conserved between SARS-CoV variants and derived from the membrane, the spike protein, the nucleoprotein, and the ORF1ab. Amplified and cloned antiviral CD8+ T cells secreted IFN-γ upon peptide-specific activation. Furthermore, specific TCR sequences were identified for two highly immunogenic Ags. Hence, PDC*line represents an efficient platform to identify immunogenic viral targets for future immunotherapies.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Epitopos de Linfócito T , Linfócitos T CD8-Positivos , Peptídeos , Células DendríticasRESUMO
Aberrant glycosylation recently emerged as an unmissable hallmark of cancer progression in many cancers. In melanoma, there is growing evidence that the tumour 'glycocode' plays a major role in promoting cell proliferation, invasion, migration, but also dictates the nature of the immune infiltrate, which strongly affects immune cell function, and clinical outcome. Aberrant glycosylation patterns dismantle anti-tumour defence through interactions with lectins on immune cells, which are crucial to shape anti-tumour immunity but also to trigger immune evasion. The glycan/lectin axis represents a new immune subversion pathway that is exploited by melanoma to hijack immune cells and escape from immune control. In this review, we describe the glycosylation features of melanoma tumour cells, and further gather findings related to the role of glycosylation in melanoma tumour progression, deciphering in detail its impact on immunity. We also depict glycan-based strategies aiming at restoring a functional anti-tumour response in melanoma patients. Glycans/lectins emerge as key immune checkpoints with promising translational properties. Exploitation of these pathways could reshape potent anti-tumour immunity while impeding immunosuppressive circuits triggered by aberrant tumour glycosylation patterns, holding great promise for cancer therapy.
Assuntos
Progressão da Doença , Imunoterapia , Melanoma , Polissacarídeos , Humanos , Melanoma/imunologia , Melanoma/terapia , Melanoma/metabolismo , Melanoma/patologia , Polissacarídeos/metabolismo , Polissacarídeos/imunologia , Glicosilação , Imunoterapia/métodos , Animais , Evasão Tumoral , Lectinas/metabolismo , Lectinas/imunologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismoRESUMO
Dendritic cell (DC) subsets play a crucial role in shaping anti-tumour immunity. Cancer escapes from the control immune system by hijacking DC functions. Yet, bases for such subversion are only partially understood. Tumour cells display aberrant glycan motifs on surface glycoproteins and glycolipids. Such carbohydrate patterns can be sensed by DCs through C-type lectin receptors (CLRs) that are critical to shape and orientate immune responses. We recently demonstrated that melanoma tumour cells harboured an aberrant 'glyco-code,' and that circulating and tumour-infiltrating DCs from melanoma patients displayed major perturbations in their CLR profiles. To decipher whether melanoma, through aberrant glycan patterns, may exploit CLR pathways to mislead DCs and evade immune control, we explored the impact of glycan motifs aberrantly found in melanoma (neoglycoproteins [NeoGP] functionalised with Gal, Man, GalNAc, s-Tn, fucose [Fuc] and GlcNAc residues) on features of human DC subsets (cDC2s, cDC1s and pDCs). We examined the ability of glycans to bind to purified DCs, and assessed their impact on DC basal properties and functional features using flow cytometry, confocal microscopy and multiplex secreted protein analysis. DC subsets differentially bound and internalised NeoGP depending on the nature of the glycan. Strikingly, Fuc directly remodelled the expression of activation markers and immune checkpoints, as well as the cytokine/chemokine secretion profile of DC subsets. NeoGP interfered with Toll like receptor (TLR)-signalling and pre-conditioned DCs to exhibit an altered response to subsequent TLR stimulation, dampening antitumor mediators while triggering pro-tumoral factors. We further demonstrated that DC subsets can bind NeoGP through CLRs, and identified GalNAc/MGL and s-Tn/ C-type lectin-like receptor 2 (CLEC2) as potential candidates. Moreover, DC dysfunction induced by tumour-associated carbohydrate molecules may be reversed by interfering with the glycan/CLR axis. These findings revealed the glycan/CLR axis as a promising checkpoint to exploit in order to reshape potent antitumor immunity while impeding immunosuppressive pathways triggered by aberrant tumour glycosylation patterns. This may rescue DCs from tumour hijacking and improve clinical success in cancer patients.
Assuntos
Lectinas Tipo C , Melanoma , Masculino , Humanos , Células Dendríticas , Glicoproteínas , Receptores Toll-Like/metabolismo , Polissacarídeos/metabolismoRESUMO
Warm autoimmune hemolytic anemia (wAIHA) is a rare acquired autoimmune disease mediated by antibodies targeting red blood cells. The involvement of CD4 T-helper cells has been scarcely explored, with most findings extrapolated from animal models. Here, we performed quantification of both effector T lymphocytes (Teff) and regulatory T cells (Treg), associated with functional and transcriptomic analyses of Treg in human wAIHA. We observed a shift of Teff toward a Th17 polarization concordant with an increase in serum interleukin-17 concentration that correlates with red blood cell destruction parameters, namely lactate dehydrogenase and bilirubin levels. A decrease in circulating Treg, notably effector Treg, associated with a functional deficiency, as represented by their decrease capability to inhibit Teff proliferation, were also observed. Treg deficiency was associated with a reduced expression of Foxp3, the master transcription factor known to maintain the Treg phenotype stability and suppressive functions. Transcriptomic profiling of Treg revealed activation of the tumor necrosis facto (TNF)-α pathway, which was linked to increased serum TNF-α concentrations that were twice as high as in controls. Treg transcriptomic profiling also suggested that post-translational mechanisms possibly accounted for Foxp3 downregulation and Treg dysfunctions. Since TNF-α participates in the rupture of immune tolerance during wAIHA, its inhibition could be of interest. To this end, the effects of fostamatinib, a SYK inhibitor, were investigated in vitro, and we showed that besides the inhibition of erythrocyte phagocytosis by monocytes, fostamatinib is also able to dampen TNF-α production, thus appearing as a promising multitargeting therapy in wAIHA (clinicaltrials gov. Identifier: NCT02158195).
Assuntos
Aminopiridinas , Anemia Hemolítica Autoimune , Morfolinas , Pirimidinas , Linfócitos T Reguladores , Animais , Humanos , Fator de Necrose Tumoral alfa , Fatores de Transcrição Forkhead/metabolismo , Células Th17RESUMO
Despite the growing use of desensitization strategies, hyperimmune patients remain at high risk of antibody-mediated rejection suggesting that, even when donor-specific antibodies (DSA) are effectively depleted, anti-donor specific B cells persist. We included 10 highly sensitized recipients that underwent desensitization with plasmapheresis and B cell depletion prior to kidney transplantation. We quantified changes in DSA (luminex), total B-cell subsets (flow cytometry), anti-donor HLA B cells (fluorospot), and single-cell metabolism in serially collected samples before desensitization, at the time of transplant, and at 6 and 12 months thereafter. Desensitization was associated with a decrease in DSA and total memory B cell and naive B cell percentage, while plasma cells and memory anti-donor HLA circulating B cells persisted up to 12 months after transplant. At 12-month post-transplantation, memory B cells increased their glycolytic capacity, while proliferative KI67+ plasma cells modified their metabolism by increasing fatty acid and amino acid oxidation capacity and decreasing their glucose dependence. Despite effective DSA depletion, anti-donor B cells persist in kidney transplant recipients. Due to the reliance of these cells on glycolysis, glycolysis-targeting therapies might represent a valuable treatment strategy.
Assuntos
Glicólise , Transplante de Rim , Plasmaferese , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Células B de Memória/imunologia , Células B de Memória/metabolismo , Isoanticorpos/imunologia , Dessensibilização Imunológica/métodos , Rejeição de Enxerto/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Memória Imunológica , Idoso , Antígenos HLA/imunologiaRESUMO
Plasmacytoid dendritic cells (pDCs) represent a subset of antigen-presenting cells that play an ambivalent role in cancer immunity. Here, we investigated the clinical significance of circulating pDCs and their interaction with tumor-specific T cell responses in patients with non-small cell lung cancer (NSCLC, n = 126) . The relation between intratumoral pDC signature and immune checkpoint inhibitors efficacy was also evaluated. Patients with NSCLC had low level but activated phenotype pDC compared to healthy donors. In overall population, patients with high level of pDC (pDChigh) had improved overall survival (OS) compared to patients with pDClow, median OS 30.4 versus 20.7 months (P = 0.013). This clinical benefit was only observed in stage I to III patients, but not in metastatic disease. We showed that patients harboring pDChigh profile had high amount of Th1-diffentiation cytokine interleukin-12 (IL-12) in blood and had functional T cells directed against a broad range of tumor antigens. Furthermore, a high pDC signature in the tumor microenvironment was associated with improved clinical outcome in patients treated with anti-PD-(L)1 therapy. Overall, this study showed that circulating pDChigh is associated with long-term OS in NSCLC and highlighted the predictive value of intratumor pDC signature in the efficacy of immune checkpoint inhibitors.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Linfócitos T , Inibidores de Checkpoint Imunológico , Células Dendríticas , Microambiente TumoralRESUMO
BACKGROUND: Reinstating inflammation resolution represents an innovative concept to regain inflammation control in diseases marked by chronic inflammation. While most therapeutics target inflammatory molecules and inflammatory effector cells and mediators, targeting macrophages to initiate inflammation resolution to control neuroinflammation has not yet been attempted. Resolution-phase macrophages are critical in the resolution process to regain tissue homeostasis, and are programmed through the presence and elimination of apoptotic leukocytes. Hence, inducing resolution-phase macrophages might represent an innovative therapeutic approach to control and terminate dysregulated neuroinflammation. METHODS: Here, we investigated if the factors released by in vitro induced resolution-phase macrophages (their secretome) are able to therapeutically reprogram macrophages to control neuroinflammation in the model of experimental autoimmune encephalomyelitis (EAE). RESULTS: We found that injection of the pro-resolutive secretome reduced demyelination and decreased inflammatory cell infiltration in the CNS, notably through the in vivo reprogramming of macrophages at the epigenetic level. Adoptive transfer experiments with in vivo or in vitro reprogrammed macrophages using such pro-resolutive secretome confirmed the stability and transferability of this acquired therapeutic activity. CONCLUSIONS: Overall, our data confirm the therapeutic activity of a pro-resolution secretome in the treatment of ongoing CNS inflammation, via the epigenetic reprogramming of macrophages and open with that a new therapeutic avenue for diseases marked by neuroinflammation.
Assuntos
Encefalomielite Autoimune Experimental , Animais , Doenças Neuroinflamatórias , Macrófagos , Inflamação , LeucócitosRESUMO
Acute graft-versus-host disease (aGVHD) is a major limitation of the therapeutic potential of allogeneic hematopoietic cell transplantation. Lipopolysaccharides (LPS) derived from intestinal gram-negative bacteria are well-known aGVHD triggers and amplifiers. Here, we explored the LPS metabolism in aGVHD mouse models using an innovative quantification method. We demonstrated that systemic LPS accumulation after transplantation was due, at least partly, to a defect in its clearance through lipoprotein-mediated transport to the liver (i.e., the so-called reverse LPS transport). After transplantation, reduced circulating HDL concentration impaired LPS neutralization and elimination through biliary flux. Accordingly, HDL-deficient (Apoa1tm1Unc ) recipient mice developed exacerbated aGVHD. Repeated administration of HDL isolated from human plasma significantly decreased the mortality and the severity of aGVHD. While the potential role of HDL in scavenging circulating LPS was examined in this study, it appears that HDL plays a more direct immunomodulatory role by limiting or controlling aGVHD. Notably, HDL infusion mitigated liver aGVHD by diminishing immune infiltration (e.g., interferon-γ-secreting CD8+ T cells and non-resident macrophages), systemic and local inflammation (notably cholangitis). Hence, our results revealed the interest of HDL-based therapies in the prevention of aGVHD.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Doença Aguda , Animais , Linfócitos T CD8-Positivos , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Lipopolissacarídeos/metabolismo , Lipoproteínas HDL/metabolismo , Camundongos , Transplante HomólogoRESUMO
Kidney transplant candidates (KTCs) who are HLA highly sensitized (calculated panel-reactive alloantibodies >95%) have poor access to deceased kidney transplantation. In this single-center prospective study, 13 highly sensitized desensitization-naïve KTCs received IV tocilizumab (8 mg/kg) every 4 weeks. We evaluated tolerability as well as immune responses, that is, T cell, B cell, T follicular helper (Tfh) subsets, blood cytokines (IL-6, soluble IL-6 receptor-sIL-6R-, IL-21), blood chemokines (CXCL10, CXCL13), and anti-HLA alloantibodies. Tocilizumab treatment was well-tolerated except in one patient who presented spondylodiscitis, raising a note of caution. Regarding immune parameters, there were no significant changes of percentages of lymphocyte subsets, that is, CD3+ , CD3+ /CD4+ , CD3+ /CD8+ T cells, and NK cells. This was also the case for Tfh cell subsets, B cells, mature B cells, plasma cells, pre-germinal center (GC) B cells, and post-GC B cells, whereas we observed a significant increase in naïve B cells (p = .02) and a significant decrease in plasmablasts (p = .046) over the tocilizumab treatment course. CXCL10, CXCL13, IL-21, total IgG, IgA, and IgM levels did not significantly change during tocilizumab therapy; conversely, there was a significant increase in IL-6 levels (p = .03) and a huge increase in sIL-6R (p = .00004). There was a marginal effect on anti-HLA alloantibodies (class I and class II). To conclude in highly sensitized KTCs, tocilizumab as a monotherapy limited B cell maturation; however, it had almost no effect on anti-HLA alloantibodies.
Assuntos
Transplante de Rim , Anticorpos Monoclonais Humanizados , Linfócitos T CD8-Positivos , Humanos , Imunidade , Estudos ProspectivosRESUMO
Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell-membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3's role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approximately 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation.
Assuntos
1-Acilglicerofosfocolina O-AciltransferaseRESUMO
This study aimed to assess the implication of mucosal-associated invariant T (MAIT) cells in GCA. Blood samples were obtained from 34 GCA patients (before and after 3 months of treatment with glucocorticoids (GC) alone) and compared with 20 controls aged >50 years. MAIT cells, defined by a CD3+CD4-TCRγδ-TCRVα7.2+CD161+ phenotype, were analyzed by flow cytometry. After sorting, we assessed the ability of MAIT cells to proliferate and produce cytokines after stimulation with anti CD3/CD28 microbeads or IL-12 and IL-18. MAIT were stained in temporal artery biopsies (TAB) by confocal microscopy. MAIT cells were found in the arterial wall of positive TABs but was absent in negative TAB. MAIT frequency among total αß-T cells was similar in the blood of patients and controls (0.52 vs. 0.57%; P = 0.43) and not modified after GC treatment (P = 0.82). Expression of IFN-γ was increased in MAIT cells from GCA patients compared to controls (44.49 vs. 32.9%; P = 0.029), and not modified after 3 months of GC therapy (P = 0.82). When they were stimulated with IL-12 and IL-18, MAIT from GCA patients produced very high levels of IFN-γ and displayed a stronger proliferation compared with MAIT from controls (proliferation index 3.39 vs. 1.4; P = 0.032). In GCA, the functional characteristics of MAIT cells are modified toward a pro-inflammatory phenotype and a stronger proliferation capability in response to IL-12 and IL-18, suggesting that MAIT might play a role in GCA pathogenesis. Our results support the use of treatments targeting IL-12/IL-18 to inhibit the IFN-γ pathway in GCA.
Assuntos
Arterite de Células Gigantes/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Idoso , Biópsia , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Feminino , Arterite de Células Gigantes/sangue , Arterite de Células Gigantes/patologia , Voluntários Saudáveis , Humanos , Interferon gama/metabolismo , Interleucina-12/metabolismo , Interleucina-18/metabolismo , Masculino , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/metabolismo , Cultura Primária de Células , Estudos Prospectivos , Transdução de Sinais/imunologia , Artérias Temporais/patologia , Técnicas de Cultura de TecidosRESUMO
Neoplasms involving plasmacytoid Dendritic Cells (pDCs) include Blastic pDC Neoplasms (BPDCN) and other pDC proliferations, where pDCs are associated with myeloid malignancies: most frequently Chronic MyeloMonocytic Leukemia (CMML) but also Acute Myeloid Leukemia (AML), hereafter named pDC-AML. We aimed to determine the reactive or neoplastic origin of pDCs in pDC-AML, and their link with the CD34+ blasts, monocytes or conventional DCs (cDCs) associated in the same sample, by phenotypic and molecular analyses (targeted NGS, 70 genes). We compared 15 pDC-AML at diagnosis with 21 BPDCN and 11 normal pDCs from healthy donors. CD45low CD34+ blasts were found in all cases (10-80% of medullar cells), associated with pDCs (4-36%), monocytes in 14 cases (1-10%) and cDCs (2 cases, 4.8-19%). pDCs in pDC-AML harbor a clearly different phenotype from BPDCN: CD4+ CD56- in 100% of cases, most frequently CD303+, CD304+ and CD34+; lower expression of cTCL1 and CD123 with isolated lymphoid markers (CD22/CD7/CD5) in some cases, suggesting a pre-pDC stage. In all cases, pDCs, monocytes and cDC are neoplastic since they harbor the same mutations as CD34+ blasts. RUNX1 is the most commonly mutated gene: detected in all AML with minimal differentiation (M0-AML) but not in the other cases. Despite low number of cases, the systematic association between M0-AML, RUNX1 mutations and an excess of pDC is puzzling. Further evaluation in a larger cohort is required to confirm RUNX1 mutations in pDC-AML with minimal differentiation and to investigate whether it represents a proliferation of blasts with macrophage and DC progenitor potential.
Assuntos
Células Dendríticas , Leucemia Mieloide Aguda , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/genética , Mutação , FenótipoRESUMO
BACKGROUND: Patients with chronic kidney disease (CKD) are more prone to develop premature age-related diseases. Data on immune senescence are scarce in CKD populations, except in end-stage renal disease and dialysis. We designed a longitudinal prospective study to evaluate immune senescence at different CKD stages and its influence on CKD patient outcomes. METHODS: Clinical and biological data collections were performed on 222 patients at different CKD stages [1-2 (n = 85), 4 (n = 53) and 5 (n = 84)]. Immune senescence biomarkers were measured by cytometry on T cells (CD28, CD57, CD45RA, CD31, γH2A.X) or by quantitative polymerase chain reaction [relative telomere length (RTL)] on peripheral blood mononuclear cells and analysed according to CKD stages and outcomes. RESULTS: CKD was associated with an increase in immune senescence and inflammation biomarkers, as follows: low thymic output (197 ± 25 versus 88 ± 13 versus 73 ± 21 CD4+CD45RA+CD31+ T cells/mm3), an increased proportion of terminally differentiated T cells (CD8+CD28-CD57+) (24 ± 18 versus 32 ± 17 versus 35 ± 19%) restricted to cytomegalovirus-positive patients, telomere shortening (1.11 ± 0.36 versus 0.78 ± 0.24 versus 0.97 ± 0.21 telomere:single copy ratio) and an increase in C-reactive protein levels [median 2.9 (range 1.8-4.9) versus 5.1 (27-9.6) versus 6.2 (3.4-10.5) mg/L]. In multivariate analysis, shorter RTL was associated with death {hazard ratio [HR] 4.12 [95% confidence interval (CI) 1.44-11.75]}. Low thymic output was associated with infections [HR 1.79 (95% CI (1.34-9.58)] and terminally differentiated CD8+ T-cell expansion with a risk of cardiovascular events [CEs; HR 4.86 (95% CI 1.72-13.72)]. CONCLUSION: CKD was associated with premature immune ageing. Each of these alterations increased the risk of specific age-related diseases, such as RTL and death, thymic function and infections and terminally differentiated CD8+ T-cell expansion and CEs.
Assuntos
Envelhecimento/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Leucócitos Mononucleares/imunologia , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/mortalidade , Uremia/complicações , Idoso , Envelhecimento/imunologia , Biomarcadores/análise , Feminino , França/epidemiologia , Humanos , Estudos Longitudinais , Ativação Linfocitária , Masculino , Estudos Prospectivos , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/patologia , Taxa de Sobrevida , Telômero/genéticaRESUMO
BACKGROUND & AIMS: The quantification of lipopolysaccharide (LPS) in biological fluids is challenging. We aimed to measure plasma LPS concentration using a new method of direct quantification of 3-hydroxymyristate (3-HM), a lipid component of LPS, and to evaluate correlations between 3-HM and markers of liver function, endothelial activation, portal hypertension and enterocyte damage. METHODS: Plasma from 90 noninfected cirrhotic patients (30 Child-Pugh [CP]-A, 30 CP-B, 30 CP-C) was prospectively collected. The concentration of 3-HM was determined by high-performance liquid chromatography coupled with mass spectrometry. RESULTS: 3-HM levels were higher in CP-C patients (CP-A/CP-B/CP-C: 68/70/103 ng/mL, P = 0.005). Patients with severe acute alcoholic hepatitis (n = 16; 113 vs 74 ng/mL, P = 0.012), diabetic patients (n = 22; 99 vs 70 ng/mL, P = 0.028) and those not receiving beta blockers (n = 44; 98 vs 72 ng/mL, P = 0.034) had higher levels of 3-HM. We observed a trend towards higher baseline levels of 3-HM in patients with hepatic encephalopathy (n = 7; 144 vs 76 ng/mL, P = 0.45) or SIRS (n = 10; 106 vs 75 ng/mL, P = 0.114). In multivariate analysis, high levels of 3-HM were associated with CP (OR = 4.39; 95%CI = 1.79-10.76) or MELD (OR = 8.24; 95%CI = 3.19-21.32) scores. Patients dying from liver insufficiency (n = 6) during a 12-month follow-up had higher baseline levels of 3-HM (106 vs 75 ng/mL, P = 0.089). CONCLUSIONS: In noninfected cirrhotic patients, 3-HM arises more frequently with impairment of liver function, heavy alcohol consumption, diabetic status, nonuse of beta blockers and a trend towards poorer outcome is also observed. The direct mass measurement of LPS using 3-HM appears reliable to detect transient endotoxaemia and promising to manage the follow-up of cirrhotic patients.
Assuntos
Análise Química do Sangue/métodos , Endotoxemia/diagnóstico , Lipopolissacarídeos/sangue , Cirrose Hepática/sangue , Ácidos Mirísticos/sangue , Idoso , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Feminino , Encefalopatia Hepática/sangue , Encefalopatia Hepática/complicações , Humanos , Cirrose Hepática/diagnóstico , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Projetos Piloto , Fatores de Risco , Índice de Gravidade de DoençaRESUMO
Innate lymphoid cells (ILCs) have been characterized as innate immune cells capable to modulate the immune response in the mucosae. Human ILCs have been rarely described in secondary lymphoid organs except in tonsils. Moreover, their function and phenotype in human secondary lymphoid organs during autoimmune diseases have never been studied. We took advantage of splenectomy as a treatment of immune thrombocytopenia (ITP) to describe and compare splenic ILC from 18 ITP patients to 11 controls. We first confirmed that ILC3 represented the most abundant ILC subset in human non-inflamed spleens, accounting for 90% of total ILC, and that they were mostly constituted of NKp44- cells. On the contrary, proportions of ILC1 and ILC2 in spleens were lower than in blood. Splenic IL-2- and IFN-γ-producing ILC1 were increased in ITP. While the frequencies of total splenic ILC3 were similar in the two groups, splenic GM-CSF-producing ILC3 were increased in ITP. This is the first description of human ILC in a major secondary lymphoid organ during an autoimmune disease, ITP. We observed an expansion of splenic ILC1 that could participate to the Th1 skewing, while the increased production of GM-CSF by splenic ILC3 could stimulate splenic macrophages which play a key role in ITP pathophysiology.
Assuntos
Linfócitos/imunologia , Púrpura Trombocitopênica Idiopática/imunologia , Baço/imunologia , Esplenectomia , Adulto , Estudos de Casos e Controles , Diferenciação Celular , Feminino , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Imunidade Inata , Interferon gama/genética , Interferon gama/imunologia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Contagem de Linfócitos , Linfócitos/patologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Receptor 2 Desencadeador da Citotoxicidade Natural/deficiência , Receptor 2 Desencadeador da Citotoxicidade Natural/genética , Receptor 2 Desencadeador da Citotoxicidade Natural/imunologia , Púrpura Trombocitopênica Idiopática/patologia , Púrpura Trombocitopênica Idiopática/cirurgia , Baço/patologia , Baço/cirurgiaRESUMO
Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate-binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-κB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach.
Assuntos
Antineoplásicos/farmacologia , Colesterol/metabolismo , Células Dendríticas/metabolismo , Receptores X do Fígado/agonistas , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/patologia , Feminino , Humanos , Interleucina-3/metabolismo , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT5/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
We studied the impact of a set of immune cells contained within granulocyte colony-stimulating factor-mobilized peripheral blood stem cell grafts (naïve and memory T-cell subsets, B cells, regulatory T cells, invariant natural killer T cells [iNKTs], NK cells, and dendritic cell subsets) in patients (n = 80) undergoing allogeneic stem cell transplantation (SCT), using the composite end point of graft-versus-host disease (GVHD)-free and progression-free survival (GPFS) as the primary end point. We observed that GPFS incidences in patients receiving iNKT doses above and below the median were 49% vs 22%, respectively (P= .007). In multivariate analysis, the iNKT dose was the only parameter with a significant impact on GPFS (hazard ratio = 0.48; 95% confidence interval, 0.27-0.85;P= .01). The incidences of severe grade III to IV acute GVHD and National Institutes of Health grade 2 to 3 chronic GVHD (12% and 16%, respectively) were low and associated with the use of antithymocyte globulin in 91% of patients. No difference in GVHD incidence was reported according to the iNKT dose. In conclusion, a higher dose of iNKTs within the graft is associated with an improved GPFS. These data may pave the way for prospective and active interventions aiming to manipulate the graft content to improve allo-SCT outcome.
Assuntos
Soro Antilinfocitário/administração & dosagem , Doença Enxerto-Hospedeiro , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/patologia , Transplante de Células-Tronco , Adolescente , Adulto , Idoso , Aloenxertos , Criança , Doença Crônica , Intervalo Livre de Doença , Feminino , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/mortalidade , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Taxa de SobrevidaRESUMO
Regulation of the inflammatory response involves the control of dendritic cell survival. To our knowledge, nothing is known about the survival of plasmacytoid dendritic cells (pDC) in such situation. pDC are specialized in type I IFN (IFN-I) secretion to control viral infections, and IFN-I also negatively regulate pDC survival during the course of viral infections. In this study, we asked about pDC behavior in the setting of virus-free inflammation. We report that pDC survival was profoundly reduced during different nonviral inflammatory situations in the mouse, through a mechanism independent of IFN-I and TLR signaling. Indeed, we demonstrated that during inflammation, CD8(+) T cells induced pDC apoptosis through the perforin pathway. The data suggest, therefore, that pDC have to be turned down during ongoing acute inflammation to not initiate autoimmunity. Manipulating CD8(+) T cell response may therefore represent a new therapeutic opportunity for the treatment of pDC-associated autoimmune diseases, such as lupus or psoriasis.
Assuntos
Apoptose , Linfócitos T CD8-Positivos/imunologia , Sobrevivência Celular , Células Dendríticas/patologia , Perforina/metabolismo , Animais , Autoimunidade , Linfócitos T CD8-Positivos/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/imunologia , Inflamação/imunologia , Interferon-alfa/imunologia , Interferon-alfa/metabolismo , Camundongos , Perforina/imunologia , Receptor 7 Toll-Like/metabolismoRESUMO
BACKGROUND: End-stage renal disease (ESRD) causes premature ageing of the immune system. However, it is not known whether hemodialysis (HD) and peritoneal dialysis (PD) similarly affect the T cell system. METHODS: The aim of our study was to analyse whether dialysis modality may mitigate ESRD-induced immune senescence. We explored a large population of patients (675 ESRD patients) and both confirmed and refined the results in a second cohort (84 patients). RESULTS: HD patients exhibited higher inflammatory monocytes counts (44/mm3 (1-520) vs 36/mm3 (1-161); p = 0.005). Patients on HD also had higher frequency of CD8 T cells (24% (7-61) vs 22% (8-42); p = 0.003) and reduced CD4/CD8 ratio. Such results were confirmed in the second cohort. Moreover, both CD4 + CD57 + CD28- (3.25% (0-38.2) vs 1.05% (0-28.5); p = 0.068) and CD8 + CD57 + CD28- (38.5% (3.6-76.8) vs 26.1 (2.1-46.9); p = 0.039) T cells frequencies were increased in HD patients. Telomere length did not differ according to dialysis modality, but was inversely related to ferritin levels (r = - 0.33; p = 0.003). There was a trend towards higher telomerase activity in PD patients (11 ± 13 vs 6 ± 11; p = 0.053). Thymic function was not different in PD and HD patients. Patients on PD before transplantation had a higher risk of acute rejection after kidney transplantation (HR, 1.61; 95%CI, 1.02 to 2.56; p = 0.041). CONCLUSIONS: More pronounced inflammation with hemodialysis may induce premature aging of the immune system. This observation correlates with a lower risk of acute kidney rejection in patients previously on HD. Clinical consequences in patients maintained on dialysis should be determined. TRIAL REGISTRATION: Trial registration: NCT02843867, registered July 8, 2016.
RESUMO
Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease.