Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511069

RESUMO

Lactobacillus delbrueckii, the type species of the genus Lactobacillus, is widely recognized as the primary starter culture in the dairy industry due to its proteolytic activity, which enables it to growth in milk. In this study, a comprehensive genomic analysis of the proteolytic system was conducted on L. delbrueckii strains. The analysis included 27 genomes of L. delbrueckii, with a specific focus on the key enzyme involved in this system, the cell envelope-associated proteinase (CEP). The amino acid sequences, as well as the protein-structure prediction of the CEPs, were compared. Additionally, syntenic analysis of the genomic locus related to the CEPs revealed high conservation in L. delbrueckii subsp. bulgaricus strains, while L. delbrueckii subsp. lactis strains exhibited greater variability, including the presence of insertion sequences, deletions, and rearrangements. Finally, the CEP promoter region and putative regulatory elements responsible for controlling the expression of the proteolytic system in lactobacilli were investigated. Our genomic analysis and in silico characterization of the CEPs contribute to our understanding of proteolytic activity and the potential applications of these lactic acid bacteria in the dairy industry. Further research in this area will expand our knowledge and potential practical uses of these findings.


Assuntos
Lactobacillus delbrueckii , Lactobacillus delbrueckii/genética , Peptídeo Hidrolases/metabolismo , Lactobacillus , Sequência de Aminoácidos , Genômica
2.
Biochim Biophys Acta Gen Subj ; 1861(7): 1770-1776, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28323072

RESUMO

BACKGROUND: Enterocin CRL35 is a class IIa bacteriocin with anti-Listeria activity. Resistance to these peptides has been associated with either the downregulation of the receptor expression or changes in the membrane and cell walls. The scope of the present work was to characterize enterocin CRL35 resistant Listeria strains with MICs more than 10,000 times higher than the MIC of the WT sensitive strain. METHODS: Listeria monocytogenes INS7 resistant isolates R2 and R3 were characterized by 16S RNA gene sequencing and rep-PCR. Bacterial growth kinetic was studied in different culture media. Plasma membranes of sensitive and resistant bacteria were characterized by FTIR and Langmuir monolayer techniques. RESULTS: The growth kinetic of the resistant isolates was slower as compared to the parental strain in TSB medium. Moreover, the resistant isolates barely grew in a glucose-based synthetic medium, suggesting that these cells had a major alteration in glucose transport. Resistant bacteria also had alterations in their cell wall and, most importantly, membrane lipids. In fact, even though enterocin CRL35 was able to bind to the membrane-water interface of both resistant and parental sensitive strains, this peptide was only able to get inserted into the latter membranes. CONCLUSIONS: These results indicate that bacteriocin receptor is altered in combination with membrane structural modifications in enterocin CRL35-resistant L. monocytogenes strains. GENERAL SIGNIFICANCE: Highly enterocin CRL35-resistant isolates derived from Listeria monocytogenes INS7 have not only an impaired glucose transport but also display structural changes in the hydrophobic core of their plasma membranes.


Assuntos
Bacteriocinas/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Bacteriocinas/metabolismo , Membrana Celular/química , Farmacorresistência Bacteriana , Glucose/metabolismo , Listeria monocytogenes/crescimento & desenvolvimento , Lipídeos de Membrana/análise , Testes de Sensibilidade Microbiana
3.
BMC Microbiol ; 16(1): 240, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27737643

RESUMO

BACKGROUND: Despite the fact that most vitamins are present in a variety of foods, malnutrition, unbalanced diets or insufficient intake of foods are still the cause of vitamin deficiencies in humans in some countries. Vitamin B12 (Cobalamin) is a complex compound that is only naturally produced by bacteria and archea. It has been reported that certain strains belonging to lactic acid bacteria group are capable of synthesized water-soluble vitamins such as those included in the B-group, as vitamin B12. In this context, the goal of the present paper was to evaluate and characterize the production of vitamin B12 in Lactobacillus coryniformis CRL 1001, a heterofermentative strain isolated from silage. RESULTS: Cell extract of L. coryniformis CRL 1001, isolated from silage, is able to correct the coenzyme B12 requirement of Salmonella enterica serovar Typhimurium AR 2680 in minimal medium. The chemical characterization of the corrinoid-like molecule isolated from CRL 1001 cell extract using HPLC and mass spectrometry is reported. The majority of the corrinoid produced by this strain has adenine like Coα-ligand instead 5,6-dimethylbenzimidazole. Genomic studies revealed the presence of the complete machinery of the anaerobic biosynthesis pathway of coenzyme B12. The detected genes encode all proteins for the corrin ring biosynthesis and for the binding of upper (ß) and lower (α) ligands in one continuous stretch of the chromosome. CONCLUSIONS: The results here described show for the first time that L. coryniformis subsp. coryniformis CRL 1001 is able to produce pseudocobalamin containing adenine instead of 5,6-dimethlbenzimidazole in the Coα-ligand. Genomic analysis allowed the identification and characterization of the complete de novo biosynthetic pathway of the corrinoid produced by the CRL 1001 strain.


Assuntos
Lactobacillus/genética , Lactobacillus/metabolismo , Família Multigênica , Vitamina B 12/biossíntese , Vitamina B 12/genética , Adenina/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Benzimidazóis/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Cobamidas/genética , Cobamidas/metabolismo , Genes Bacterianos , Lactobacillus/isolamento & purificação , Espectrometria de Massas/métodos , Fases de Leitura Aberta , Salmonella enterica/genética , Salmonella enterica/metabolismo , Salmonella typhimurium/genética , Análise de Sequência de Proteína , Silagem/microbiologia , Vitamina B 12/química , Vitamina B 12/isolamento & purificação
4.
Front Microbiol ; 15: 1408624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962125

RESUMO

Introduction: Levilactobacillus brevis CRL 2013, a plant-derived lactic acid bacterium (LAB) with immunomodulatory properties, has emerged as an efficient producer of γ-aminobutyric acid (GABA). Notably, not all LAB possess the ability to produce GABA, highlighting the importance of specific genetic and environmental conditions for GABA synthesis. This study aimed to elucidate the intriguing GABA-producing machinery of L. brevis CRL 2013 and support its potential for safe application through comprehensive genome analysis. Methods: A comprehensive genome analysis of L. brevis CRL 2013 was performed to identify the presence of antibiotic resistance genes, virulence markers, and genes associated with the glutamate decarboxylase system, which is essential for GABA biosynthesis. Then, an optimized chemically defined culture medium (CDM) was supplemented with monosodium glutamate (MSG) and yeast extract (YE) to analyze their influence on GABA production. Proteomic and transcriptional analyses were conducted to assess changes in protein and gene expression related to GABA production. Results: The absence of antibiotic resistance genes and virulence markers in the genome of L. brevis CRL 2013 supports its safety for potential probiotic applications. Genes encoding the glutamate decarboxylase system, including two gad genes (gadA and gadB) and the glutamate antiporter gene (gadC), were identified. The gadB gene is located adjacent to gadC, while gadA resides separately on the chromosome. The transcriptional regulator gadR was found upstream of gadC, with transcriptional analyses demonstrating cotranscription of gadR with gadC. Although MSG supplementation alone did not activate GABA synthesis, the addition of YE significantly enhanced GABA production in the optimized CDM containing glutamate. Proteomic analysis revealed minimal differences between MSG-supplemented and non-supplemented CDM cultures, whereas YE supplementation resulted in significant proteomic changes, including upregulation of GadB. Transcriptional analysis confirmed increased expression of gadB and gadR upon YE supplementation, supporting its role in activating GABA production. Conclusion: These findings provide valuable insights into the influence of nutrient composition on GABA production. Furthermore, they unveil the potential of L. brevis CRL 2013 as a safe, nonpathogenic strain with valuable biotechnological traits which can be further leveraged for its probiotic potential in the food industry.

5.
J Neurosci ; 32(19): 6490-500, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22573671

RESUMO

Accumulation of ß-amyloid (Aß) inside brain neurons is an early and crucial event in Alzheimer's disease (AD). Studies in brains of AD patients and mice models of AD suggested that cholesterol homeostasis is altered in neurons that accumulate Aß. Here we directly investigated the role of intracellular oligomeric Aß(42) (oAß(42)) in neuronal cholesterol homeostasis. We report that oAß(42) induces cholesterol sequestration without increasing cellular cholesterol mass. Several features of AD, such as endosomal abnormalities, brain accumulation of Aß and neurofibrillary tangles, and influence of apolipoprotein E genotype, are also present in Niemann-Pick type C, a disease characterized by impairment of intracellular cholesterol trafficking. These common features and data presented here suggest that a pathological mechanism involving abnormal cholesterol trafficking could take place in AD. Cholesterol sequestration in Aß-treated neurons results from impairment of intracellular cholesterol trafficking secondary to inhibition of protein prenylation. oAß(42) reduces sterol regulatory element-binding protein-2 (SREBP-2) cleavage, causing decrease of protein prenylation. Inhibition of protein prenylation represents a mechanism of oAß(42)-induced neuronal death. Supply of the isoprenoid geranylgeranyl pyrophosphate to oAß(42)-treated neurons recovers normal protein prenylation, reduces cholesterol sequestration, and prevents Aß-induced neurotoxicity. Significant to AD, reduced levels of protein prenylation are present in the cerebral cortex of the TgCRND8 mouse model. In conclusion, we demonstrate a significant inhibitory effect of Aß on protein prenylation and identify SREBP-2 as a target of oAß(42), directly linking Aß to cholesterol homeostasis impairment.


Assuntos
Peptídeos beta-Amiloides/fisiologia , Colesterol/metabolismo , Fragmentos de Peptídeos/fisiologia , Prenilação de Proteína/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 2/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Anticolesterolemiantes/farmacologia , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Morte Celular , Células Cultivadas , Feminino , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/genética , Espaço Intracelular/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Fragmentos de Peptídeos/antagonistas & inibidores , Prenilação de Proteína/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
6.
J Bacteriol ; 194(2): 538-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22207745

RESUMO

Lactobacillus curvatus is one of the most prevalent lactic acid bacteria found in fermented meat products. Here, we present the draft genome sequence of Lactobacillus curvatus CRL705, a bacteriocin producer strain isolated from an Argentinean artisanal fermented sausage, which consists of 1,833,251 bp (GC content, 41.9%) and two circular plasmids of 12,342 bp (pRC12; GC, 43.9%) and 18,664 bp (pRC18; GC, 34.4%).


Assuntos
Genoma Bacteriano , Lactobacillus/classificação , Lactobacillus/genética , Fermentação , Microbiologia de Alimentos , Produtos da Carne/microbiologia , Dados de Sequência Molecular
7.
J Bacteriol ; 194(2): 550, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22207752

RESUMO

We report the draft genome sequence of Enterococcus mundtii CRL1656, which was isolated from the stripping milk of a clinically healthy adult Holstein dairy cow from a dairy farm of the northwestern region of Tucumán (Argentina). The 3.10-Mb genome sequence consists of 450 large contigs and contains 2,741 predicted protein-coding genes.


Assuntos
Enterococcus/classificação , Enterococcus/genética , Genoma Bacteriano , Animais , Argentina/epidemiologia , Bovinos , Feminino , Mastite Bovina/epidemiologia , Mastite Bovina/microbiologia , Leite/microbiologia , Dados de Sequência Molecular
8.
Biotechnol Lett ; 34(8): 1511-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22526425

RESUMO

The effect of the conjugated bile acid (BA) on the microbial internal pH (pHin) values in lactic acid bacteria with and without ability to hydrolyze bile salts (BSH[+] and BSH[-] strains, respectively) was evaluated. BSH(+) strains showed a gradual increase in the pHin following the addition of conjugated BA; this behavior was more pronounced with GDCA than with TDCA may be due to the higher affinity of BSH for the glyco-conjugates acids. Conversely, the BSH(-) strains showed a decrease in internal pH probably as a consequence of weak acid accumulation. As expected, a decrease in the cytoplasmatic pH affected the cell survival in this last group of strains, while the BSH(+) strains were more resistant to the toxic effect of BA. PURPOSE OF WORK: To evaluate bile salt hydrolase activities, changes in the internal pH and cell survival to bile acids in lactic acid bacteria to establish the relationship between these parameters.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/farmacologia , Lactobacillales/efeitos dos fármacos , Lactobacillales/metabolismo , Amidoidrolases/genética , Proteínas de Bactérias/genética , Ácidos e Sais Biliares/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Espaço Intracelular/química , Espaço Intracelular/enzimologia , Lactobacillales/enzimologia , Lactobacillales/genética , Viabilidade Microbiana
9.
Foodborne Pathog Dis ; 9(1): 68-74, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22011041

RESUMO

Listeria monocytogenes is a foodborne pathogen causative of opportunistic infections. Listeriosis is associated with severe infections in pregnant women causing abortion or neonatal listeriosis. An alternative to antibiotics are safe novel bacteriocins peptides such as enterocin CRL35 with strong antilisterial activity produced by Enterococcus mundtii CRL35. In the present paper, our goal is to study the effectiveness of this peptide and the producer strain in a murine model of pregnancy-associated listeriosis. A single dose of 5×10(9) colony-forming unit of L. monocytogenes FBUNT (Faculty of Biochemistry-University of Tucumán) resulted in translocation of pathogen to liver and spleen of BALB/c pregnant mice. The maximum level of Listeria was observed on day 3 postinfection. Interestingly, the intragastric administration of enterocin CRL35 significantly reduced the translocation of the pathogen to vital organs. On the other hand, the preadministration of E. mundtii CRL35 slightly inhibited this translocation. Listeria infection caused a significant increase in polymorphonuclear leukocytes at day 3 postinfection compared to the noninfected group. This value was reduced after the administration of enterocin CRL35. No significant changes were observed in either white blood cells or lymphocytes counts. Based on the data presented in the present work enterocin CRL35 would be a promising alternative for the prevention of Listeria infections.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Enterococcus/química , Listeria monocytogenes/efeitos dos fármacos , Listeriose/prevenção & controle , Complicações Infecciosas na Gravidez/prevenção & controle , Administração Oral , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/uso terapêutico , Bacteriocinas/isolamento & purificação , Bacteriocinas/uso terapêutico , Feminino , Humanos , Leucócitos , Leucocitose/sangue , Listeria monocytogenes/crescimento & desenvolvimento , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Gravidez , Complicações Infecciosas na Gravidez/microbiologia
10.
FEMS Microbiol Lett ; 369(1)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35325116

RESUMO

Bacteriocins from Gram-positive bacteria have been proposed as natural food preservative and there is a need for large-scale production for commercial purposes. The aim of the present work is to evaluate whey, a cheese industrial by-product, for the production and microencapsulation of enterocin CRL35. Whey proved to be a promising basal medium for bacterial growth although the bacteriocin production was quite low. However, it could be much favored with the addition of yeast extract at concentrations as low as 0.5%. Besides improving bacteriocin production, this peptide was successfully microencapsulated by spray drying using whey protein concentrate and a chitosan derivative as wall materials. Microcapsules averaging 10 ± 5 µm diameter were obtained, with good structural integrity and high antimicrobial activity with a stability of at least 12 weeks at 4°C. In summary, sustainable bacteriocin production and microencapsulation was achieved recycling whey or its derivatives. In addition, the formulation owns high antimicrobial activity with a long shelf life. The development of a food preservative may represent a green solution for handling whey.


Assuntos
Bacteriocinas , Conservantes de Alimentos , Antibacterianos/farmacologia , Bacteriocinas/metabolismo , Laticínios , Conservantes de Alimentos/farmacologia
11.
Rev Argent Microbiol ; 43(1): 24-7, 2011.
Artigo em Espanhol | MEDLINE | ID: mdl-21491062

RESUMO

In the last years, Enterobacteriaceae such as Klebsiella pneumoniae, Proteus mirabilis and Escherichia coli, have acquired resistance to third-generation cephalosporins (C3G) because of the presence of plasmid-mediated AmpC ß-lactamases. The aim of this work was to detect plasmid AmpC enzymes and to investigate the predominant types in our region. Between March and July 2009, 733 consecutive isolates of Enterobacteriaceae derived from hospitals and outpatient centers were studied. Susceptibility testing was performed by disk diffusion; one P. mirabilis and three E. coli strains showed resistance to cephamycins (cefoxitin) and C3G. An E-test to determine MIC and a synergy test by aminophenylboronic disks were performed. Enzymatic activity against cefoxitin was confirmed by a microbiological assay. A polymerase chain reaction (PCR) for the detection of plasmid-mediated ampC genes of different groups was performed and a 462-bp amplicon was obtained when using primers directed against the CIT group; the obtained sequences were compared to blaCMY-2 sequences, showing 100% identity. The emergence of CMY-2-type plasmid-mediated AmpC ß-lactamases indicated the importance of implementing systematic monitoring of these resistances to avoid potential clinical and epidemiological consequences.


Assuntos
Proteínas de Bactérias/análise , Escherichia coli/enzimologia , Proteus mirabilis/enzimologia , Fatores R/genética , beta-Lactamases/análise , Sequência de Aminoácidos , Argentina , Proteínas de Bactérias/genética , Cefoxitina/farmacologia , Resistência às Cefalosporinas/genética , Cefalosporinas/farmacologia , DNA Bacteriano/genética , Enterobacteriaceae/enzimologia , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Infecções por Proteus/microbiologia , Proteus mirabilis/efeitos dos fármacos , Proteus mirabilis/genética , Proteus mirabilis/crescimento & desenvolvimento , Proteus mirabilis/isolamento & purificação , Homologia de Sequência de Aminoácidos , Infecções Urinárias/microbiologia , beta-Lactamases/química , beta-Lactamases/genética
12.
Front Immunol ; 12: 647049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912172

RESUMO

Myelosuppression is the major dose-limiting toxicity of cancer chemotherapy. There have been many attempts to find new strategies that reduce myelosuppression. The dietary supplementation with lactic acid bacteria (LAB) improved respiratory innate immune response and the resistance against respiratory pathogens in immunosupressed hosts. Although LAB viability is an important factor in achieving optimal protective effects, non-viable LAB are capable of stimulating immunity. In this work, we studied the ability of oral preventive administration of viable and non-viable Lactobacillus rhamnosus CRL1505 or L. plantarum CRL1506 (Lr05, Lr05NV, Lp06V or Lp06NV, respectively) to minimize myelosuppressive and immunosuppressive effects derived from chemotherapy. Cyclophosphamide (Cy) impaired steady-state myelopoiesis in lactobacilli-treated and untreated control mice. Lr05V, Lr05NV and Lp06V treatments were the most effective to induce the early recovery of bone marrow (BM) tissue architecture, leukocytes, myeloid, pool mitotic and post-mitotic, peroxidase positive, and Gr-1Low/High cells in BM. We selected the CRL1505 strain for being the one capable of maintaining its myelopoiesis-enhancing properties in its non-viable form. Although the CRL1505 treatments do not modify the Cy ability to induce apoptosis, both increased the incorporation of BrdU in BM cells. Consequently, Lr05NV and Lr05V treatments were able to promote early recovery of LSK cells (Lin-Sca-1+c-Kit+ cells), multipotent progenitors (Lin-Sca-1+c-Kit+CD34+ cells), and myeloid cells (Gr-1+Ly6G+Ly6C- cells) with respect to the untreated Cy control. In addition, these treatments were able to increase the frequency of IL17A-producing innate lymphoid cells in the intestinal lamina propria (IL-17A+RORγt+CD4-NKp46+ cells) after Cy injection. These results were correlated with an increase in the IL-17A serum levels, a GM-CSF high expression and a CXCL12 lower expression in BM. Therefore, both Lr05V and Lr05NV treatments are able to activate beneficially the IL-17A/GM-CSF axis and accelerate the recovery of Cy-induced immunosuppression by increasing BM myeloid precursors. We demonstrated for the first time the beneficial effect of CRL1505 strain on myelopoiesis affected by a chemotherapeutic drug. Furthermore, Lr05NV could be a good and safe resource for reducing chemotherapy-induced leukopenia. The results are a starting point for future research and open up broad prospects for future applications of the immunobiotics.


Assuntos
Ciclofosfamida/toxicidade , Hospedeiro Imunocomprometido/efeitos dos fármacos , Lacticaseibacillus rhamnosus/imunologia , Lactobacillus/imunologia , Mielopoese/efeitos dos fármacos , Probióticos/administração & dosagem , Administração Oral , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Hospedeiro Imunocomprometido/imunologia , Imunossupressores/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Contagem de Leucócitos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Camundongos , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Mielopoese/imunologia
13.
BMC Genom Data ; 22(1): 29, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479493

RESUMO

BACKGROUND: 6S RNA is a regulator of cellular transcription that tunes the metabolism of cells. This small non-coding RNA is found in nearly all bacteria and among the most abundant transcripts. Lactic acid bacteria (LAB) constitute a group of microorganisms with strong biotechnological relevance, often exploited as starter cultures for industrial products through fermentation. Some strains are used as probiotics while others represent potential pathogens. Occasional reports of 6S RNA within this group already indicate striking metabolic implications. A conceivable idea is that LAB with 6S RNA defects may metabolize nutrients faster, as inferred from studies of Echerichia coli. This may accelerate fermentation processes with the potential to reduce production costs. Similarly, elevated levels of secondary metabolites might be produced. Evidence for this possibility comes from preliminary findings regarding the production of surfactin in Bacillus subtilis, which has functions similar to those of bacteriocins. The prerequisite for its potential biotechnological utility is a general characterization of 6S RNA in LAB. RESULTS: We provide a genomic annotation of 6S RNA throughout the Lactobacillales order. It laid the foundation for a bioinformatic characterization of common 6S RNA features. This covers secondary structures, synteny, phylogeny, and product RNA start sites. The canonical 6S RNA structure is formed by a central bulge flanked by helical arms and a template site for product RNA synthesis. 6S RNA exhibits strong syntenic conservation. It is usually flanked by the replication-associated recombination protein A and the universal stress protein A. A catabolite responsive element was identified in over a third of all 6S RNA genes. It is known to modulate gene expression based on the available carbon sources. The presence of antisense transcripts could not be verified as a general trait of LAB 6S RNAs. CONCLUSIONS: Despite a large number of species and the heterogeneity of LAB, the stress regulator 6S RNA is well-conserved both from a structural as well as a syntenic perspective. This is the first approach to describe 6S RNAs and short 6S RNA-derived transcripts beyond a single species, spanning a large taxonomic group covering multiple families. It yields universal insights into this regulator and complements the findings derived from other bacterial model organisms.


Assuntos
Regulação Bacteriana da Expressão Gênica , Lactobacillales/genética , RNA Bacteriano/genética , RNA não Traduzido/genética , Bacillus subtilis/genética , Sequência Conservada/genética , Humanos , Sintenia/genética
14.
Microorganisms ; 9(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34946051

RESUMO

Lactobacillus delbrueckii subsp. lactis CRL 581 beneficially modulates the intestinal antiviral innate immune response triggered by the Toll-like receptor 3 (TLR3) agonist poly(I:C) in vivo. This study aimed to characterize further the immunomodulatory properties of the technologically relevant starter culture L. delbrueckii subsp. lactis CRL 581 by evaluating its interaction with intestinal epithelial cells and macrophages in the context of innate immune responses triggered by TLR3. Our results showed that the CRL 581 strain was able to adhere to porcine intestinal epithelial (PIE) cells and mucins. The CRL 581 strain also augmented the expression of antiviral factors (IFN-α, IFN-ß, Mx1, OAS1, and OAS2) and reduced inflammatory cytokines in PIE cells triggered by TLR3 stimulation. In addition, the influence of L. delbrueckii subsp. lactis CRL 581 on the response of murine RAW macrophages to the activation of TLR3 was evaluated. The CRL 581 strain was capable of enhancing the expression of IFN-α, IFN-ß, IFN-γ, Mx1, OAS1, TNF-α, and IL-1ß. Of note, the CRL 581 strain also augmented the expression of IL-10 in macrophages. The results of this study show that the high proteolytic strain L. delbrueckii spp. lactis CRL 581 was able to beneficially modulate the intestinal innate antiviral immune response by regulating the response of both epithelial cells and macrophages relative to TLR3 activation.

15.
Biochimie ; 168: 185-189, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31715214

RESUMO

Lactobacillus coryniformis CRL 1001 and L. reuteri CRL 1098 have the complete genes necessary to synthesize pseudo-cobalamin as final product in a vitamin B12 free commercial medium. Unlike vitaminB12 (the most biologically active form), the pseudo-cobalamin contains adenine instead of 5,6-dimethlbenzimidazole (DMB) in the Coα-ligand. Considering the vitamin B12-gene clusters of these bacteria, the aim of this work was to analyze the production of corrinoids with DMB (vitamin B12) instead of adenine (pseudo-B12) as lower ligand base in a vitamin B12 free chemically defined medium (CDM) without purines. Genome-wide screening of genes related to purine metabolism showed that both strains possess all pur genes necessary for the synthesis of inositol monophosphate, the main precursor for purine biosynthesis. Accordingly, both strains were able to grow in B12 free CDM without purines, with the supplementation of different synthetic intermediaries. Isolated compounds with positive vitamin B12 activity were quantified and characterized by LC/MS-MS. Total corrinoids values were higher for both strains in comparison to those obtained in vitaminB12 free commercial medium. Interestingly, CRL 1001 strain synthesized cobalamin, suggesting that this strain is able to activate DMB as nitrogenous base instead adenine when it is in excess in a purine-free medium. The present paper represents the first demonstration of a partial metabolic shift to produce vitamin B12 in a Lactobacillus strain.


Assuntos
Lactobacillus/metabolismo , Limosilactobacillus reuteri/metabolismo , Purinas/metabolismo , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo , Meios de Cultura/metabolismo , Redes e Vias Metabólicas
16.
Int J Food Microbiol ; 333: 108792, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32707524

RESUMO

Gamma aminobutyric acid (GABA) is a non-protein amino acid that is widely distributed in nature and its physiological importance goes beyond its role as an inhibitory neurotransmitter of the central nervous system in mammals. Since microbial fermentation is one of the most promising methods to obtain GABA, the production of this metabolite by several strains of lactic acid bacteria isolated from quinoa and amaranth sourdoughs was investigated. Lactobacillus brevis CRL 2013 produced the highest GABA levels, reaching 265 mM when optimal culture conditions were set up. The fermentative profile showed that CRL 2013 was able to catabolize carbohydrates through the phosphoketolase pathway yielding variable amounts of lactic acid, acetate and ethanol, which depended on the type of carbon source available and the presence of external electron acceptors such as fructose. Enhanced growth parameters and low GABA synthesis were associated to pentose fermentation. This impairment on GABA production machinery was partially overpassed by the addition of ethanol to the culture media. These results support the potential use of L. brevis CRL 2013 as a starter culture for the manufacture of GABA-enriched functional foods and provide further insights to the understanding of the GAD system regulation in lactic acid bacteria.


Assuntos
Pão/microbiologia , Metabolismo dos Carboidratos/fisiologia , Fermentação/fisiologia , Levilactobacillus brevis/metabolismo , Ácido gama-Aminobutírico/biossíntese , Acetatos/metabolismo , Amaranthus/microbiologia , Carboidratos , Chenopodium quinoa/microbiologia , Meios de Cultura/metabolismo , Etanol/metabolismo , Ácido Láctico/metabolismo
17.
Front Microbiol ; 11: 610016, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391235

RESUMO

Gamma-aminobutyric acid (GABA) plays a key role in mammals as the major inhibitory neurotransmitter of the central nervous system. Although GABA may not be able to cross the human blood-brain barrier, it was approved as a food ingredient because of its benefits to the host after oral administration including anti-hypertensive, anti-depressant and anti-inflammatory activities. Considering the current trend toward the development of new functional and natural products and that microbial fermentation is one of the most promising methods to produce this non-protein amino acid, the in situ production of GABA through fermentation of strawberry and blueberry juices by the efficient GABA producer strain, Levilactobacillus brevis (formerly known as Lactobacillus brevis) CRL 2013, was evaluated. A high GABA production (262 mM GABA) was obtained after fermenting strawberry juice supplemented with yeast extract for 168 h, being GABA yield significantly higher in strawberry juices than in the blueberry ones. Thus, GABA-enriched fermented strawberry juice (FSJ) was selected to carry out in vivo and in vitro studies. The in vitro functional analysis of the GABA-enriched FSJ demonstrated its ability to significantly decrease the expression of cox-2 gene in LPS stimulated RAW 264.7 macrophages. In addition, in vivo studies in mice demonstrated that both, L. brevis CRL 2013 and the GABA-enriched FSJ were capable of reducing the levels of peritoneal, intestinal and serum TNF-α, IL-6, and CXCL1, and increasing IL-10 and IFN-γ in mice exposed to an intraperitoneal challenge of LPS. Of note, the GABA-enriched FSJ was more efficient than the CRL 2013 strain to reduce the pro-inflammatory factors and enhance IL-10 production. These results indicated that the CRL 2013 strain exerts anti-inflammatory effects in the context of LPS stimulation and that this effect is potentiated by fermentation. Our results support the potential use of L. brevis CRL 2013 as an immunomodulatory starter culture and strawberry juice as a remarkable vegetable matrix for the manufacture of GABA-enriched fermented functional foods capable of differentially modulating the inflammatory response triggered by TLR4 activation.

18.
Microbiol Resour Announc ; 8(20)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097498

RESUMO

Enterococcus faecalis CECT7121 is a corn silage probiotic bacterium that shows antibacterial activity against Gram-positive pathogens from different origins. Its genome sequence is 2.9 Mb long with a G+C content of 37.3%. Genome annotation identified three bacteriocin gene clusters in the genome.

19.
Microbiol Resour Announc ; 8(15)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975815

RESUMO

Lactobacillus plantarum CRL681 was isolated from Argentinean artisanal fermented sausages. Here, the draft genome sequence of the CRL681 strain is described. The reads were assembled into contigs with a total estimated size of 3,370,224 bp. A total of 3,300 open reading frames (ORFs) were predicted, including 3,126 protein-coding sequences. The draft genome sequence of L. plantarum CRL681 will be useful for understanding the organism's metabolic activities and for biotechnological applications.

20.
Food Res Int ; 125: 108622, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31554055

RESUMO

The enterohemorrhagic Escherichia (E.) coli (EHEC) is a pathogen of great concern for public health and the meat industry all over the world. The high economic losses in meat industry and the high costs of the illness highlight the necessity of additional efforts to control this pathogen. Previous studies have demonstrated the inhibitory activity of Enterococcus mundtii CRL35 towards EHEC, showing a specific proteomic response during the co-culture. In the present work, additional studies of the EHEC-Ent. mundtii interaction were carried out: i) differential protein expression of E. coli O157:H7 NCTC12900 growing in co-culture with Ent. mundtii in a meat environment, ii) the reciprocal influence between these two microorganisms in the adhesion to extracellular matrix (ECM) proteins and iii) the possible induction of the phage W933, coding for Shiga toxin (Stx1), by Ent. mundtii CRL35. Proteomic analysis showed a significant repression of a number of E. coli NCTC12900 proteins in co-culture respect to its single culture, these mostly related to the metabolism and transport of amino acids and nucleotides. On the other hand, statistically significant overexpression of EHEC proteins involved in stress, energy production, amino acid metabolism and transcription was observed at 30 h respect to 6 h when EHEC grew in co-culture. Data are available via ProteomeXchange with identifier PXD014588. Besides, EHEC showed a decreased adhesion capacity to ECM proteins in the presence of the bioprotective strain. Finally, Ent. mundtii CRL35 did not induce the lytic cycle of W933 bacteriophage, thus indicating its potential safe use for eliminating this pathogen. Overall, this study expands the knowledge of EHEC- Ent. mundtii CRL35 interaction in a meat environment, which will certainly contribute to find out effective biological strategies to eliminate this pathogen.


Assuntos
Proteínas de Bactérias/análise , Escherichia coli O157/fisiologia , Lactobacillales/fisiologia , Carne/microbiologia , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Bacteriófagos/fisiologia , Técnicas de Cocultura , Escherichia coli O157/química , Escherichia coli O157/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA