Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35407694

RESUMO

Lime materials are in great demand for the restoration of the walls of historical buildings. However, lime coatings have insufficient resistance during operation. The purpose of this work was the modification of lime mortars with silicic acid sol in order to obtain more durable crystalline materials for construction purposes. A technology has been developed for obtaining a silica-containing additive, which consists in passing a liquid glass solution with a density of 1.053 kg/m3 through a cationic column and obtaining a silicic acid sol with a pH of 3-4 and a charge of (-) 0.053 V. The regeneration time and the amount of sol have been determined. Regularities of change in the radius of particles of silicic acid sol depending on age are determined. It is established that at an early age (up to 5 days), the radius of sol particles can be determined in accordance with the Rayleigh equation, and at a later age, in accordance with the Heller equation. The results of the calculation show that at the age of 1-5 days, the radius of the sol particles is 17.1-17.9 nm, and then the particles become coarser and the particle radius is 131.2-143 nm at the age of 19 days. The work of adhesion of silicic acid sol to lime and the heat of wetting are estimated. It is shown that the work of adhesion of water to lime is 28.9 erg/cm2, and that of the sol is 32.8 erg/cm2. The amount of heat Q released when lime is wetted with SiO2 sol is 15.0 kJ/kg, and when lime is wetted with water, it is 10.6 kJ/kg.

2.
Materials (Basel) ; 15(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35329586

RESUMO

Waste is available in an abundant form and goes to landfill without any use, creating threats to the environment. Recent and past studies have used different types of waste to stabilize soil and reduce environmental impacts. However, there is a lack of studies on the combined use of marble dust, rice-husk ash, and saw dust in expansive shale soil. The current study tries to overcome such a gap in the literature, studying the effect of marble dust, rice-husk ash, and saw dust on expansive shale's compaction characteristics and permeability properties. According to unified soil classification and the AAHTO classification system, the geotechnical properties of natural soil are classified as clay of high plasticity (CH) and A-7-5. Several tests are performed in the laboratory to investigate the compaction characteristics and permeability properties of expansive shale. Moreover, permeability apparatus is used to investigate the permeability properties of soil. In addition, due to the accuracy of the apparatus, the conventional apparatus has been partly modified. The experimental results show that the addition of waste to the soil has significantly improved soil stabilization, increasing permeability and decreasing plasticity indexes. In addition, there is a gradual decrease in the dry density of soil and an increase in the permeability of stabilized soil. Based on the outcomes of the current study, it claims and concludes that these waste materials can be used as soil stabilizers or modifiers, instead of being dumped in landfill, which will provide a green, friendly, and sustainable environment. The current study recommends that future researchers use various wastes in the concrete and soil to improve their compaction and mechanical properties.

3.
Materials (Basel) ; 15(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35407915

RESUMO

The paper studies the properties of brass workpieces for antifriction rings under severe plastic deformation by high-pressure torsion. The evolution of microstructure and mechanical properties of deformed workpieces after six cycles of deformation by high-pressure torsion at 500 °C have been studied. All metallographic studies were performed using modern methods: transmission electron microscopy (TEM) and analysis electron back scatter diffraction patterns (EBSD). The deformation resulted in an ultrafine grained structure with a large number of large-angle boundaries. The strength properties of brass increased compared to the initial state almost by three times, the microhardness also increases by three times, i.e., increased from 820 MPa in the initial state to 2115 MPa after deformation. In this case, the greatest increase in strength properties occurs in the first two cycles of deformation.

4.
Materials (Basel) ; 15(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35888529

RESUMO

A promising method of obtaining mineral fiber fillers for dry building mixtures is the processing of waste that comes from the production of technogenic fibrous materials (TFM). The novelty of the work lies in the fact that, for the first time, basalt production wastes were studied not only as reinforcing components, but also as binder ones involved in concrete structure formation. The purpose of the article is to study the physical and mechanical properties of waste technogenic fibrous materials as additives for optimizing the composition of raw concrete mixes. To assess the possibility of using wastes from the complex processing of TFM that were ground for 5 and 10 min as an active mineral additive to concrete, their chemical, mineralogical, and granulometric compositions, as well as the microstructure and physical and mechanical characteristics of the created concretes, were studied. It is established that the grinding of TFM for 10 min leads to the grinding of not only fibers, but also pellets, the fragments of which are noticeable in the total mass of the substance. The presence of quartz in the amorphous phase of TFM makes it possible to synthesize low-basic calcium silicate hydrates in a targeted manner. At 90 days age, at 10-20% of the content of TFM, the strength indicators increase (above 40 MPa), and at 30% of the additive content, they approach the values of the control composition without additives (above 35 MPa). For all ages, the ratio of flexural and compressive strengths is at the level of 0.2, which characterizes a high reinforcing effect. Analysis of the results suggests the possibility of using waste milled for 10 min as an active mineral additive, as well as to give better formability to the mixture and its micro-reinforcement to obtain fiber-reinforced concrete.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA