Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Clin Transl Immunology ; 13(5): e1512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800555

RESUMO

Objectives: Recent studies have identified expression of the non-functional P2X7 (nfP2X7) receptor on various malignant cells including ovarian cancer, but not on normal cells, which makes it a promising tumour-associated antigen candidate for chimeric antigen receptor (CAR)-T-cell immunotherapies. In this study, we assessed the cytotoxic effects of nfP2X7-CAR-T cells on ovarian cancer using in vitro and in vivo models. Methods: We evaluated the effects of nfP2X7-CAR-T cells on ovarian cancer cell lines (SKOV-3, OVCAR3, OVCAR5), normal peritoneal cells (LP-9) and primary serous ovarian cancer cells derived from patient ascites in vitro using monolayer and 3D spheroid assays. We also evaluated the effects of nfP2X7-CAR-T cells on patient-derived tissue explants, which recapitulate an intact tumour microenvironment. In addition, we investigated the effect of nfP2X7-CAR-T cells in vivo using the OVCAR-3 xenograft model in NOD-scid IL2Rγnull (NSG) mice. Results: Our study found that nfP2X7-CAR-T cells were cytotoxic and significantly inhibited survival of OVCAR3, OVCAR5 and primary serous ovarian cancer cells compared with un-transduced CD3+ T cells in vitro. However, no significant effects of nfP2X7-CAR-T cells were observed for SKOV3 or normal peritoneal cells (LP-9) cells with low P2X7 receptor expression. Treatment with nfP2X7-CAR-T cells increased apoptosis compared with un-transduced T cells in patient-derived explants and correlated with CD3 positivity. Treatment with nfP2X7-CAR-T cells significantly reduced OVCAR3 tumour burden in mice compared with un-transduced CD3 cells for 7-8 weeks. Conclusion: This study demonstrates that nfP2X7-CAR-T cells have great potential to be developed as a novel immunotherapy for ovarian cancer.

2.
Differentiation ; 83(1): 47-59, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22099176

RESUMO

Granulocyte-macrophage colony stimulating factor (GM-CSF) promotes the growth, survival, differentiation and activation of normal myeloid cells and is essential for fully functional macrophage differentiation in vivo. To better understand the mechanisms by which growth factors control the balance between proliferation and self-renewal versus growth-suppression and differentiation we have used the bi-potent FDB1 myeloid cell line, which proliferates in IL-3 and differentiates to granulocytes and macrophages in response to GM-CSF. This provides a manipulable model in which to dissect the switch between growth and differentiation. We show that, in the context of signaling from an activating mutant of the GM-CSF receptor ß subunit, a single intracellular tyrosine residue (Y577) mediates the granulocyte fate decision. Loss of granulocyte differentiation in a Y577F second-site mutant is accompanied by enhanced macrophage differentiation and accumulation of ß-catenin together with activation of Tcf4 and other Wnt target genes. These include the known macrophage lineage inducer, Egr1. We show that forced expression of Tcf4 or a stabilised ß-catenin mutant is sufficient to promote macrophage differentiation in response to GM-CSF and that GM-CSF can regulate ß-catenin stability, most likely via GSK3ß. Consistent with this pathway being active in primary cells we show that inhibition of GSK3ß activity promotes the formation of macrophage colonies at the expense of granulocyte colonies in response to GM-CSF. This study therefore identifies a novel pathway through which growth factor receptor signaling can interact with transcriptional regulators to influence lineage choice during myeloid differentiation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem da Célula , Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Macrófagos/citologia , beta Catenina/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Granulócitos/citologia , Camundongos , Mutação , Transdução de Sinais , Fator de Transcrição 4 , Via de Sinalização Wnt/genética , beta Catenina/genética
3.
Nat Commun ; 14(1): 5546, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684239

RESUMO

Chimeric antigen receptor (CAR)-T cell immunotherapy is a novel treatment that genetically modifies the patients' own T cells to target and kill malignant cells. However, identification of tumour-specific antigens expressed on multiple solid cancer types, remains a major challenge. P2X purinoceptor 7 (P2X7) is a cell surface expressed ATP gated cation channel, and a dysfunctional version of P2X7, named nfP2X7, has been identified on cancer cells from multiple tissues, while being undetectable on healthy cells. We present a prototype -human CAR-T construct targeting nfP2X7 showing potential antigen-specific cytotoxicity against twelve solid cancer types (breast, prostate, lung, colorectal, brain and skin). In xenograft mouse models of breast and prostate cancer, CAR-T cells targeting nfP2X7 exhibit robust anti-tumour efficacy. These data indicate that nfP2X7 is a suitable immunotherapy target because of its broad expression on human tumours. CAR-T cells targeting nfP2X7 have potential as a wide-spectrum cancer immunotherapy for solid tumours in humans.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Imunoterapia , Encéfalo , Mama , Membrana Celular , Modelos Animais de Doenças
4.
Cell Immunol ; 275(1-2): 12-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22533972

RESUMO

The peptidase inhibitor PI16 was shown previously by microarray analysis to be over-expressed by CD4-positive/CD25-positive Treg compared with CD4-positive/CD25-negative Th cells. Using a monoclonal antibody to the human PI16 protein, we found that PI16-positive Treg have a memory (CD45RO-positive) phenotype and express higher levels of FOXP3 than PI16-negative Treg. PI16-positive Treg are functional in suppressor assays in vitro with potency similar to PI16-negative Treg. Further phenotyping of the PI16-positive Treg revealed that the chemokine receptors CCR4 and CCR6 are expressed by more of the PI16-positive/CD45RO-positive Treg compared with PI16-negative/CD45RO-positive Treg or Th cells. PI16-positive Treg showed enhanced in vitro migration towards the inflammatory chemokines CCL17 and CCL20, suggesting they can migrate to sites of inflammation. We conclude that PI16 identifies a novel distinct subset of functional memory Treg which can migrate to sites of inflammation and regulate the pro-inflammatory response at those sites.


Assuntos
Proteínas de Transporte/imunologia , Movimento Celular , Quimiocina CCL17/imunologia , Quimiocina CCL20/imunologia , Glicoproteínas/imunologia , Memória Imunológica , Linfócitos T Reguladores/imunologia , Proliferação de Células , Citocinas/imunologia , Fatores de Transcrição Forkhead/imunologia , Humanos , Antígenos Comuns de Leucócito/imunologia , Fenótipo , Linfócitos T Reguladores/citologia
5.
J Immunol ; 185(2): 1071-81, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20554955

RESUMO

The transcription factor FOXP3 is essential for the formation and function of regulatory T cells (Tregs), and Tregs are essential for maintaining immune homeostasis and tolerance. This is demonstrated by a lethal autoimmune defect in mice lacking Foxp3 and in immunodysregulation polyendocrinopathy enteropathy X-linked syndrome patients. However, little is known about the molecular basis of human FOXP3 function or the relationship between direct and indirect targets of FOXP3 in human Tregs. To investigate this, we have performed a comprehensive genome-wide analysis for human FOXP3 target genes from cord blood Tregs using chromatin immunoprecipitation array profiling and expression profiling. We have identified 5579 human FOXP3 target genes and derived a core Treg gene signature conserved across species using mouse chromatin immunoprecipitation data sets. A total of 739 of the 5579 FOXP3 target genes were differentially regulated in Tregs compared with Th cells, thus allowing the identification of a number of pathways and biological functions overrepresented in Tregs. We have identified gene families including cell surface molecules and microRNAs that are differentially expressed in FOXP3(+) Tregs. In particular, we have identified a novel role for peptidase inhibitor 16, which is expressed on the cell surface of >80% of resting human CD25(+)FOXP3(+) Tregs, suggesting that in conjunction with CD25 peptidase inhibitor 16 may be a surrogate surface marker for Tregs with potential clinical application.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Genoma Humano/genética , Linfócitos T Reguladores/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Proliferação de Células , Separação Celular/métodos , Células Cultivadas , Imunoprecipitação da Cromatina/métodos , Sangue Fetal/citologia , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , Linfócitos T Reguladores/citologia
6.
Oncotarget ; 9(45): 27708-27727, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29963231

RESUMO

Control of oncogenes, including ZEB1 and ZEB2, is a major checkpoint for preventing cancer, and loss of this control contributes to many cancers, including breast cancer. Thus tumour suppressors, such as FOXP3, which is mutated or lost in many cancer tissues, play an important role in maintaining normal tissue homeostasis. Here we show for the first time that ZEB2 is selectively down regulated by FOXP3 and also by the FOXP3 induced microRNA, miR-155. Interestingly, neither FOXP3 nor miR-155 directly altered the expression of ZEB1. In breast cancer cells repression of ZEB2, independently of ZEB1, resulted in reduced expression of a mesenchymal marker, Vimentin and reduced invasion. However, there was no de-repression of E-cadherin and migration was enhanced. Small interfering RNAs targeting ZEB2 suggest that this was a direct effect of ZEB2 and not FOXP3/miR-155. In normal human mammary epithelial cells, depletion of endogenous FOXP3 resulted in de-repression of ZEB2, accompanied by upregulated expression of vimentin, increased E-cadherin expression and cell morphological changes. We suggest that FOXP3 may help maintain normal breast epithelial characteristics through regulation of ZEB2, and loss of FOXP3 in breast cancer cells results in deregulation of ZEB2.

7.
Cytokine Growth Factor Rev ; 15(2-3): 83-5, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15110791

RESUMO

The membrane-proximal cytoplasmic region of cytokine receptors (CRs) is highly conserved and essential for receptor activation. In particular this region is essential for the activation of members of the Janus family of protein kinases (JAK) which results in initiation of receptor signaling. We have examined the sequence of this region in a number of CR signaling and accessory subunits with a view to better delineating motifs that play an important role in initiating receptor activity. Here, we have delineated two distinct proline-rich motifs in the membrane-proximal domains of cytokine receptors. Their configuration and distribution among CR subunits strongly suggest a model in which the two motifs act in a concerted manner to induce full receptor and JAK activation.


Assuntos
Motivos de Aminoácidos , Sequência Consenso , Receptores de Citocinas/metabolismo , Sequência de Aminoácidos , Animais , Citoplasma/metabolismo , Humanos , Dados de Sequência Molecular , Prolina/metabolismo , Proteínas Tirosina Quinases/metabolismo
8.
Biochem J ; 392(Pt 1): 173-80, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16033334

RESUMO

Haem is essential for the health and function of nearly all cells. 5-Aminolaevulinic acid synthase-1 (ALAS-1) catalyses the first and rate-controlling step of haem biosynthesis. ALAS-1 is repressed by haem and is induced strongly by lipophilic drugs that also induce CYP (cytochrome P450) proteins. We investigated the effects on the avian ALAS-1 gene promoter of a phenobarbital-like chemical, Glut (glutethimide), and a haem synthesis inhibitor, DHA (4,6-dioxoheptanoic acid), using a reporter gene assay in transiently transfected LMH (Leghorn male hepatoma) hepatoma cells. A 9.1 kb cALAS-1 (chicken ALAS-1) promoter-luciferase-reporter construct, was poorly induced by Glut and not by DHA alone, but was synergistically induced by the combination. In contrast, a 3.5 kb promoter ALAS-1 construct was induced by Glut alone, without any further effect of DHA. In addition, exogenous haem (20 microM) repressed the basal and Glut- and DHA-induced activity of luciferase reporter constructs containing 9.1 and 6.3 kb of ALAS-1 5'-flanking region but not the construct containing the first 3.5 kb of promoter sequence. This effect of haem was subsequently shown to be dependent on the -6.3 to -3.5 kb region of the 5'-flanking region of cALAS-1 and requires the native orientation of the region. Two deletion constructs of this approx. 2.8 kb haem-repressive region (1.7 and 1.1 kb constructs) retained haem-dependent repression of basal and drug inductions, suggesting that more than one cis-acting elements are responsible for this haem-dependent repression of ALAS-1. These results demonstrate that there are regulatory regions in the 5'-flanking region of the cALAS-1 gene that respond to haem and provide a basis for further investigations of the molecular mechanisms by which haem down-regulates expression of the ALAS-1 gene.


Assuntos
5-Aminolevulinato Sintetase/genética , Regulação para Baixo/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Heme/farmacologia , Animais , Linhagem Celular Tumoral , Galinhas , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutetimida/farmacologia , Heme/antagonistas & inibidores , Heme/metabolismo , Heptanoatos/farmacologia , Regiões Promotoras Genéticas/genética , Regulação para Cima/efeitos dos fármacos
9.
Int J Biochem Cell Biol ; 36(2): 281-95, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14643893

RESUMO

The initial step of the heme biosynthetic pathway in erythroid cells is catalyzed by an erythroid-specific isoform of 5-aminolevulinate synthase-2 (ALAS2). Previously, an alternatively spliced mRNA isoform of ALAS2 was identified although the functional significance of the encoded protein was unknown. We sought to characterize the contribution of this ALAS2 isoform to overall erythroid heme biosynthesis. Here, we report the identification of three novel ALAS2 mRNA splice isoforms in addition to the previously described isoform lacking exon 4-derived sequence. Quantitation of these mRNAs using ribonuclease protection experiments revealed that the isoform without exon 4-derived sequence represents approximately 35-45% of total ALAS2 mRNA while the newly identified transcripts together represent approximately 15%. Despite the significant amounts of these three new transcripts, their features indicate that they are unlikely to substantially contribute to overall mitochondrial ALAS2 activity. In contrast, in vitro studies show that the major splice variant (lacking exon 4-encoded sequence) produces a functional enzyme, albeit with slightly reduced activity and with affinity for the ATP-specific, beta subunit of succinyl CoA synthase, comparable to that of mature ALAS2. It was also established that the first 49 amino acids of the ALAS2 pre-protein are necessary and sufficient for translocation across the mitochondrial inner membrane and that this process is not affected by the absence of exon 4-encoded sequence. We conclude that the major splice isoform of ALAS2 is functional in vivo and could significantly contribute to erythroid heme biosynthesis and hemoglobin formation.


Assuntos
5-Aminolevulinato Sintetase/biossíntese , 5-Aminolevulinato Sintetase/genética , Eritrócitos/metabolismo , Heme/biossíntese , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Catálise , Códon , Eletroforese em Gel de Poliacrilamida , Éxons , Vetores Genéticos , Proteínas de Fluorescência Verde , Hemoglobinas/química , Humanos , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Isoformas de Proteínas , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Reticulócitos/metabolismo , Ribonucleases/metabolismo , Frações Subcelulares/metabolismo , Succinato-CoA Ligases/química , Técnicas do Sistema de Duplo-Híbrido
10.
J Leukoc Biol ; 85(3): 445-51, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19103952

RESUMO

Adult stem cells are capable of generating all of the cells of the hematopoietic system, and this process is orchestrated in part by the interactions between these cells and the stroma. T cell progenitors emerge from the stem cell compartment and migrate to the thymus, where their terminal differentiation and maturation occur, and it is during this phase that selection shapes the immune repertoire. Notch ligands, including Delta-like 1 (DL1), play a critical role in this lymphoid differentiation. To mimic this in vitro, stroma-expressing DL1 have been used to generate CD4(+)CD8(+) double-positive and single-positive T cells from hematopoietic stem/progenitor cells. This system provides a robust tool to investigate thymopoiesis; however, its capacity to generate regulatory T cells (Tregs) has yet to be reported. Natural Tregs (nTregs) develop in the thymus and help maintain immune homeostasis and have potential clinical use as a cell therapy for modulation of autoimmune disease or for transplant tolerization. Here, we describe for the first time the development of a population of CD4(+)CD25(+) CD127(lo)FoxP3(+) cells that emerge in coculture of cord blood (CB) CD34(+) progenitors on OP9-DL1 stroma. These hematopoietic progenitor-derived CD4(+)CD25(+) Tregs have comparable suppressor function with CB nTregs in vitro. The addition of IL-2 to the coculture enhanced the expansion and survival of this population significantly. This manipulable culture system, therefore, generates functional Tregs and provides a system to elucidate the mechanism of Treg development.


Assuntos
Células-Tronco Hematopoéticas/citologia , Linfócitos T Reguladores/citologia , Antígenos CD4 , Técnicas de Cultura de Células , Proliferação de Células , Sangue Fetal/citologia , Fatores de Transcrição Forkhead , Humanos , Interleucina-2/farmacologia , Subunidade alfa de Receptor de Interleucina-2 , Células Estromais/citologia
11.
Stem Cells ; 22(4): 457-74, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15277693

RESUMO

Blood formation occurs throughout the life of an individual in a process driven by hematopoietic stem cells (HSCs). The ability of bone marrow (BM) and cord blood (CB) HSC to undergo self-renewal and develop into multiple blood lineages has made these cells an important clinical resource. Transplantation with BM- and CB-derived HSCs is now used extensively for treatment of hematological disorders, malignancies, and immunodeficiencies. An understanding of the embryonic origin of HSC and the factors regulating their generation and expansion in vivo will provide important information for the manipulation of these cells ex vivo. This is critical for the further development of CB transplantation, the potential of which is limited by small numbers of HSC in the donor population. Although the origins of HSCs have become clearer and progress has been made in identifying genes that are critical for the formation and maintenance of HSCs, less is known about the signals that commit specific populations of mesodermal precursors to hematopoietic cell fate. Critical signals acting on these precursor cells are likely to be derived from visceral endoderm in yolk sac and from underlying stroma in the aorta-gonad-mesonephros region. Here we summarize briefly the origin of yolk sac and embryonic HSCs before detailing evidence that bone morphogenic protein-4 (BMP4) has a crucial role in Xenopus and mammalian HSC development. We discuss evidence that BMP4 acts as a hematopoietic growth factor and review its potential to modulate HSC in ex vivo expansion cultures from cord blood.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Hematopoese/fisiologia , Fatores de Crescimento de Células Hematopoéticas/fisiologia , Animais , Células da Medula Óssea/citologia , Proteína Morfogenética Óssea 4 , Sangue Fetal/citologia , Mamíferos , Proteínas de Xenopus , Saco Vitelino/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA