Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
FASEB J ; 38(13): e23796, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38967302

RESUMO

Amyotrophic lateral sclerosis (ALS) is an orphan neurodegenerative disease. Immune system dysregulation plays an essential role in ALS onset and progression. Our preclinical studies have shown that the administration of exogenous allogeneic B cells improves outcomes in murine models of skin and brain injury through a process termed pligodraxis, in which B cells adopt an immunoregulatory and neuroprotective phenotype in an injured environment. Here, we investigated the effects of B-cell therapy in the SOD1G93A mouse preclinical model of ALS and in a person living with ALS. Purified splenic mature naïve B cells from haploidentical donor mice were administered intravenously in SOD1G93A mice for a total of 10 weekly doses. For the clinical study in a person with advanced ALS, IgA gammopathy of unclear significance, and B lymphopenia, CD19+ B cells were positively selected from a healthy haploidentical donor and infused intravenously twice, at a 60-day interval. Repeated intravenous B-cell administration was safe and significantly delayed disease onset, extended survival, reduced cellular apoptosis, and decreased astrogliosis in SOD1G93A mice. Repeated B-cell infusion in a person with ALS was safe and did not appear to generate a clinically evident inflammatory response. An improvement of 5 points on the ALSFRS-R scale was observed after the first infusion. Levels of inflammatory markers showed persistent reduction post-infusion. This represents a first demonstration of the efficacy of haploidentical B-cell infusion in the SOD1G93A mouse and the safety and feasibility of using purified haploidentical B lymphocytes as a cell-based therapeutic strategy for a person with ALS.


Assuntos
Esclerose Lateral Amiotrófica , Linfócitos B , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/imunologia , Animais , Camundongos , Humanos , Linfócitos B/imunologia , Modelos Animais de Doenças , Camundongos Transgênicos , Masculino , Feminino , Camundongos Endogâmicos C57BL , Imunomodulação , Pessoa de Meia-Idade
2.
Muscle Nerve ; 69(4): 477-489, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305586

RESUMO

INTRODUCTION/AIMS: Genetics is an important risk factor for amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting motor neurons. Recent findings demonstrate that in addition to specific genetic mutations, structural variants caused by genetic instability can also play a causative role in ALS. Genomic instability can lead to deletions, duplications, insertions, inversions, and translocations in the genome, and these changes can sometimes lead to fusion of distinct genes into a single transcript. Gene fusion events have been studied extensively in cancer; however, they have not been thoroughly investigated in ALS. The aim of this study was to determine whether gene fusions are present in ALS. METHODS: Gene fusions were identified using STAR Fusion v1.10.0 software in bulk RNA-Seq data from human postmortem samples from publicly available data sets from Target ALS and the New York Genome Center ALS Consortium. RESULTS: We report the presence of gene fusion events in several brain regions as well as in spinal cord samples in ALS. Although most gene fusions were intra-chromosomal events between neighboring genes and present in both ALS and control samples, there was a significantly greater number of unique gene fusions in ALS compared to controls. Lastly, we identified specific gene fusions with a significant burden in ALS, that were absent from both control samples and known cancer gene fusion databases. DISCUSSION: Collectively, our findings reveal an enrichment of gene fusions in ALS and suggest that these events may be an additional genetic cause linked to ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/patologia , Fusão Gênica
3.
Alzheimers Dement ; 20(3): 2240-2261, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38170841

RESUMO

INTRODUCTION: The pace of innovation has accelerated in virtually every area of tau research in just the past few years. METHODS: In February 2022, leading international tau experts convened to share selected highlights of this work during Tau 2022, the second international tau conference co-organized and co-sponsored by the Alzheimer's Association, CurePSP, and the Rainwater Charitable Foundation. RESULTS: Representing academia, industry, and the philanthropic sector, presenters joined more than 1700 registered attendees from 59 countries, spanning six continents, to share recent advances and exciting new directions in tau research. DISCUSSION: The virtual meeting provided an opportunity to foster cross-sector collaboration and partnerships as well as a forum for updating colleagues on research-advancing tools and programs that are steadily moving the field forward.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Proteínas tau
4.
Neurobiol Dis ; 144: 105032, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32739252

RESUMO

Neuroinflammation plays a pathogenic role in neurodegenerative diseases and recent findings suggest that it may also be involved in X-linked Dystonia-Parkinsonism (XDP) pathogenesis. Previously, fibroblasts and neuronal stem cells derived from XDP patients demonstrated hypersensitivity to TNF-α, dysregulation in NFκB signaling, and an increase in several pro-inflammatory markers. However, the role of inflammatory processes in XDP patient brain remains unknown. Here we demonstrate that there is a significant increase in astrogliosis and microgliosis in human post-mortem XDP prefrontal cortex (PFC) compared to control. Furthermore, there is a significant increase in histone H3 citrullination (H3R2R8R17cit3) with a concomitant increase in peptidylarginine deaminase 2 (PAD2) and 4 (PAD4), the enzymes catalyzing citrullination, in XDP post-mortem PFC. While there is a significant increase in myeloperoxidase (MPO) levels in XDP PFC, neutrophil elastase (NE) levels are not altered, suggesting that MPO may be released by activated microglia or reactive astrocytes in the brain. Similarly, there was an increase in H3R2R8R17cit3, PAD2 and PAD4 levels in XDP-derived fibroblasts. Importantly, treatment of fibroblasts with Cl-amidine, a pan inhibitor of PAD enzymes, reduced histone H3 citrullination and pro-inflammatory chemokine expression, without affecting cell survival. Taken together, our results demonstrate that inflammation is increased in XDP post-mortem brain and fibroblasts and unveil a new epigenetic potential therapeutic target.


Assuntos
Citrulinação , Distúrbios Distônicos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Histonas/metabolismo , Inflamação/metabolismo , Córtex Pré-Frontal/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Astrócitos/metabolismo , Astrócitos/patologia , Autopsia , Sobrevivência Celular , Quimiocinas/efeitos dos fármacos , Quimiocinas/metabolismo , Citrulinação/efeitos dos fármacos , Distúrbios Distônicos/patologia , Feminino , Fibroblastos/efeitos dos fármacos , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Gliose/metabolismo , Gliose/patologia , Histonas/efeitos dos fármacos , Humanos , Inflamação/patologia , Elastase de Leucócito/metabolismo , Masculino , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Ornitina/análogos & derivados , Ornitina/farmacologia , Peroxidase/metabolismo , Córtex Pré-Frontal/patologia , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo
5.
Muscle Nerve ; 62(2): 272-283, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32369618

RESUMO

BACKGROUND: The exact mechanisms underlying neuroinflammation and how they contribute to amyotrophic lateral sclerosis (ALS) pathogenesis remain unclear. One possibility is the secretion of neurotoxic factors, such as lipocalin-2 (LCN2), that lead to neuronal death. METHODS: LCN2 levels were measured in human postmortem tissue using Western blot, quantitative real time polymerase chain reaction, and immunofluorescence, and in plasma by enzyme-linked immunosorbent assay. SH-SY5Y cells were used to test the pro-inflammatory effects of LCN2. RESULTS: LCN2 is increased in ALS postmortem motor cortex, spinal cord, and plasma. Furthermore, we identified several LCN2 variants in ALS patients that may contribute to disease pathogenesis. Lastly, while LCN2 treatment caused cell death and increased pro-inflammatory markers, treatment with an anti-LCN2 antibody prevented these responses in vitro. CONCLUSIONS: LCN2 upregulation in ALS postmortem samples and plasma may be an upstream event for triggering neuroinflammation and neuronal death.


Assuntos
Esclerose Lateral Amiotrófica/genética , Inflamação/metabolismo , Lipocalina-2/genética , Córtex Motor/metabolismo , Medula Espinal/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Western Blotting , Estudos de Casos e Controles , Morte Celular , Linhagem Celular Tumoral , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Humanos , Técnicas In Vitro , Lipocalina-2/antagonistas & inibidores , Lipocalina-2/metabolismo , Lipocalina-2/farmacologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real
6.
Muscle Nerve ; 60(4): 443-452, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31241177

RESUMO

INTRODUCTION: There is an unmet need for mechanism-based biomarkers and effective disease modifying treatments in amyotrophic lateral sclerosis (ALS). Previous findings have provided evidence that histone deacetylases (HDAC) are altered in ALS, providing a rationale for testing HDAC inhibitors as a therapeutic option. METHODS: We measured class I and II HDAC protein and transcript levels together with acetylation levels of downstream substrates by using Western blotting in postmortem tissue of ALS and controls. [11 C]Martinostat, a novel HDAC positron emission tomography ligand, was also used to assess in vivo brain HDAC alterations in patients with ALS and healthy controls (HC). RESULTS: There was no significant difference in HDAC levels between patients with ALS and controls as measured by Western blotting and reverse-transcription quantitative polymerase chain reaction. Similarly, no differences were detected in [11 C]Martinostat-positron emission tomography uptake in ALS participants compared with HCs. DISCUSSION: These findings provide evidence that alterations in HDAC isoforms are not a dominant pathological feature at the bulk tissue level in ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Histona Desacetilases/genética , Córtex Motor/metabolismo , Medula Espinal/metabolismo , Adamantano/análogos & derivados , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono , Estudos de Casos e Controles , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Estudos Transversais , Feminino , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagem Molecular , Córtex Motor/diagnóstico por imagem , Córtex Motor/patologia , Imagem Multimodal , Tomografia por Emissão de Pósitrons , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia
7.
Mol Cell Neurosci ; 92: 12-16, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29928993

RESUMO

Dominant mutations in an antioxidant enzyme superoxide dismutase-1 (SOD1) cause amyotrophic lateral sclerosis (ALS), an adult-onset neurodegenerative disease characterized by loss of motor neurons. Oxidative stress has also been linked to many of the neurodegenerative diseases and is likely a central mechanism of motor neuron death in ALS. Astrocytes derived from mutant SOD1G93A mouse models or patients play a significant role in the degeneration of spinal motor neurons in ALS through a non-cell-autonomous process. Here we characterize the neuroprotective effects and mechanisms of urate (a.k.a. uric acid), a major endogenous antioxidant and a biomarker of favorable ALS progression rates, in a cellular model of ALS. Our results demonstrate a significant protective effect of urate against motor neuron injury evoked by mutant astrocytes derived from SOD1G93A mice or hydrogen peroxide induced oxidative stress. Overall, these results implicate astrocyte dependent protective effect of urate in a cellular model of ALS. These findings together with our biomarker data may advance novel targets for treating motor neuron disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Antioxidantes/farmacologia , Astrócitos/metabolismo , Neurônios Motores/metabolismo , Estresse Oxidativo , Superóxido Dismutase-1/genética , Ácido Úrico/farmacologia , Esclerose Lateral Amiotrófica/genética , Animais , Linhagem Celular , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Camundongos , Neurônios Motores/efeitos dos fármacos , Mutação , Ácido Úrico/metabolismo
8.
Hum Mol Genet ; 23(4): 1036-44, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24105466

RESUMO

Transcriptional dysregulation has been proposed to play a major role in the pathology of Huntington's disease (HD). However, the mechanisms that cause selective downregulation of target genes remain unknown. Previous studies have shown that mutant huntingtin (Htt) protein interacts with a number of transcription factors thereby altering transcription. Here we report that Htt directly interacts with methyl-CpG binding protein 2 (MeCP2) in mouse and cellular models of HD using complimentary biochemical and Fluorescent Lifetime Imaging to measure Förster Resonance Energy Transfer approaches. Htt-MeCP2 interactions are enhanced in the presence of the expanded polyglutamine (polyQ) tract and are stronger in the nucleus compared with the cytoplasm. Furthermore, we find increased binding of MeCP2 to the promoter of brain-derived neurotrophic factor (BDNF), a gene that is downregulated in HD, in the presence of mutant Htt. Finally, decreasing MeCP2 levels in mutant Htt-expressing cells using siRNA increases BDNF levels, suggesting that MeCP2 downregulates BDNF expression in HD. Taken together, these findings suggest that aberrant interactions between Htt and MeCP2 contribute to transcriptional dysregulation in HD.


Assuntos
Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular , Corpo Estriado/metabolismo , Regulação para Baixo , Expressão Gênica , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Mapeamento de Interação de Proteínas , Transcrição Gênica
9.
Dev Neurosci ; 38(5): 365-374, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28132054

RESUMO

Prenatal cocaine exposure remains a major public health concern because of its adverse effects on cognitive function. Although the molecular mechanisms underlying the cognitive impairment are not fully understood, brain-derived neurotrophic factor (BDNF) signaling via its receptor tyrosine kinase B (TrkB) is emerging as a potential candidate. We used a mouse model to examine the impact of ongoing cocaine exposure on BDNF expression in the dorsal forebrain on embryonic day 15 (E15) as well as the long-term effects of prenatal cocaine exposure on BDNF-TrkB signaling in the frontal cortex in early postnatal (postnatal day 16; P16) and adult (P60) male and female mice. We found that ongoing cocaine exposure decreased BDNF expression in the E15 dorsal forebrain, prenatal cocaine exposure did not alter BDNF or TrkB (total or phosphorylated) expression in the frontal cortex at P16, and that the prenatal cocaine exposure produced significant increases in BDNF, the activated (phosphorylated) form of TrkB, as well as Bdnf mRNA in the frontal cortex at P60. The increase in BDNF protein and mRNA expression at P60 was concurrent with hyperacetylation of histone H3 at the Bdnf promoter in the frontal cortex. The increase in frontal cortical BDNF and activated TrkB at P60 occurred in male but not female mice. Thus, our data demonstrate that ongoing cocaine exposure produces a decrease in BDNF expression in the embryonic brain, and that prenatal cocaine exposure produces a sex-specific increase in frontal cortical BDNF-TrkB signaling at P60 only in male mice. Lastly, hyperacetylation of histone H3 at the Bdnf promoter is one epigenetic mechanism mediating the effects of prenatal cocaine exposure on Bdnf expression at P60 in male mice.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Cocaína/farmacologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Envelhecimento , Animais , Encéfalo/crescimento & desenvolvimento , Feminino , Camundongos , Gravidez , Prosencéfalo/metabolismo , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/metabolismo , Receptor trkB/genética
10.
Dev Neurosci ; 38(5): 354-364, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27951531

RESUMO

Prenatal cocaine exposure remains a major public health concern because of its adverse impact on cognitive function in children and adults. We report that prenatal cocaine exposure produces significant deficits in reversal learning, a key component of cognitive flexibility, in a mouse model. We used an olfactory reversal learning paradigm and found that the prenatally cocaine-exposed mice showed a marked failure to learn the reversed paradigm. Because brain-derived neurotrophic factor (BDNF) is a key regulator of cognitive functions, and because prenatal cocaine exposure increases the expression of BDNF and the phosphorylated form of its receptor, tyrosine kinase B (TrkB), we examined whether BDNF-TrkB signaling is involved in mediating the reversal learning deficit in prenatally cocaine-exposed mice. Systemic administration of a selective TrkB receptor antagonist restored normal reversal learning in prenatally cocaine-exposed mice, suggesting that increased BDNF-TrkB signaling may be an underlying mechanism of reversal learning deficits. Our findings provide novel mechanistic insights into the reversal learning phenomenon and may have significant translational implications because impaired cognitive flexibility is a key symptom in psychiatric conditions of developmental onset.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cocaína/farmacologia , Lobo Frontal/efeitos dos fármacos , Memória/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Reversão de Aprendizagem/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Condicionamento Clássico/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Camundongos , Gravidez , Proteínas Tirosina Quinases/metabolismo , Receptor trkB/metabolismo
11.
Proc Natl Acad Sci U S A ; 110(32): E3027-36, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23872847

RESUMO

Transcriptional dysregulation is an early feature of Huntington disease (HD). We observed gene-specific changes in histone H3 lysine 4 trimethylation (H3K4me3) at transcriptionally repressed promoters in R6/2 mouse and human HD brain. Genome-wide analysis showed a chromatin signature for this mark. Reducing the levels of the H3K4 demethylase SMCX/Jarid1c in primary neurons reversed down-regulation of key neuronal genes caused by mutant Huntingtin expression. Finally, reduction of SMCX/Jarid1c in primary neurons from BACHD mice or the single Jarid1 in a Drosophila HD model was protective. Therefore, targeting this epigenetic signature may be an effective strategy to ameliorate the consequences of HD.


Assuntos
Encéfalo/metabolismo , Histonas/metabolismo , Doença de Huntington/metabolismo , Lisina/metabolismo , Animais , Animais Geneticamente Modificados , Western Blotting , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Perfilação da Expressão Gênica , Histona Desmetilases , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Regiões Promotoras Genéticas/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
J Neurosci ; 34(46): 15170-7, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25392485

RESUMO

Modified RNA molecules have recently been shown to regulate nervous system functions. This mini-review and associated mini-symposium provide an overview of the types and known functions of novel modified RNAs in the nervous system, including covalently modified RNAs, edited RNAs, and circular RNAs. We discuss basic molecular mechanisms involving RNA modifications as well as the impact of modified RNAs and their regulation on neuronal processes and disorders, including neural fate specification, intellectual disability, neurodegeneration, dopamine neuron function, and substance use disorders.


Assuntos
Encéfalo/metabolismo , RNA/química , RNA/metabolismo , Animais , Encéfalo/citologia , Encéfalo/patologia , Humanos , Metilação , Edição de RNA , RNA Circular , RNA não Traduzido/metabolismo , Receptores de Glutamato/metabolismo , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/metabolismo
13.
Am J Physiol Gastrointest Liver Physiol ; 307(2): G196-204, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24875096

RESUMO

The Hippo signaling pathway has been implicated in mammalian organ size regulation and tumor suppression. Specifically, the Hippo pathway plays a critical role regulating the activity of transcriptional coactivator Yes-associated protein (YAP), which modulates a proliferative transcriptional program. Recent investigations have demonstrated that while this pathway is activated in quiescent livers, its inhibition leads to liver overgrowth and tumorigenesis. However, the role of the Hippo pathway during the natural process of liver regeneration remains unknown. Here we investigated alterations in the Hippo signaling pathway and YAP activation during liver regeneration using a 70% partial hepatectomy (PH) rat model. Our results indicate an increase in YAP activation by 1 day following PH as demonstrated by increased YAP nuclear localization and increased YAP target gene expression. Investigation of the Hippo pathway revealed a decrease in the activation of core kinases Mst1/2 by 1 day as well as Lats1/2 and its adapter protein Mob1 by 3 days following PH. Evaluation of liver-to-body weight ratios indicated that the liver reaches its near normal size by 7 days following PH, which correlated with a return to baseline YAP nuclear levels and target gene expression. Additionally, when liver size was restored, Mst1/2 kinase activation returned to levels observed in quiescent livers indicating reactivation of the Hippo signaling pathway. These findings illustrate the dynamic changes in the Hippo signaling pathway and YAP activation during liver regeneration, which stabilize when the liver-to-body weight ratio reaches homeostatic levels.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proliferação de Células , Fator de Crescimento de Hepatócito/metabolismo , Regeneração Hepática , Fígado/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Animais , Ativação Enzimática , Regulação da Expressão Gênica , Hepatectomia , Fígado/patologia , Fígado/cirurgia , Masculino , Modelos Animais , Tamanho do Órgão , Fosforilação , Ratos , Ratos Endogâmicos Lew , Serina-Treonina Quinase 3 , Fatores de Tempo , Transcrição Gênica , Proteínas de Sinalização YAP
14.
Mol Cell Neurosci ; 50(1): 70-81, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22508027

RESUMO

Neural stem (NS) cells are a limitless resource, and thus superior to primary neurons for drug discovery provided they exhibit appropriate disease phenotypes. Here we established NS cells for cellular studies of Huntington's disease (HD). HD is a heritable neurodegenerative disease caused by a mutation resulting in an increased number of glutamines (Q) within a polyglutamine tract in Huntingtin (Htt). NS cells were isolated from embryonic wild-type (Htt(7Q/7Q)) and "knock-in" HD (Htt(140Q/140Q)) mice expressing full-length endogenous normal or mutant Htt. NS cells were also developed from mouse embryonic stem cells that were devoid of Htt (Htt(-/-)), or knock-in cells containing human exon1 with an N-terminal FLAG epitope tag and with 7Q or 140Q inserted into one of the mouse alleles (Htt(F7Q/7Q) and Htt(F140Q/7Q)). Compared to Htt(7Q/7Q) NS cells, HD Htt(140Q/140Q) NS cells showed significantly reduced levels of cholesterol, increased levels of reactive oxygen species (ROS), and impaired motility. The heterozygous Htt(F140Q/7Q) NS cells had increased ROS and decreased motility compared to Htt(F7Q/7Q). These phenotypes of HD NS cells replicate those seen in HD patients or in primary cell or in vivo models of HD. Huntingtin "knock-out" NS cells (Htt(-/-)) also had impaired motility, but in contrast to HD cells had increased cholesterol. In addition, Htt(140Q/140Q) NS cells had higher phospho-AKT/AKT ratios than Htt(7Q/7Q) NS cells in resting conditions and after BDNF stimulation, suggesting mutant htt affects AKT dependent growth factor signaling. Upon differentiation, the Htt(7Q/7Q) and Htt(140Q/140Q) generated numerous Beta(III)-Tubulin- and GABA-positive neurons; however, after 15 days the cellular architecture of the differentiated Htt(140Q/140Q) cultures changed compared to Htt(7Q/7Q) cultures and included a marked increase of GFAP-positive cells. Our findings suggest that NS cells expressing endogenous mutant Htt will be useful for study of mechanisms of HD and drug discovery.


Assuntos
Colesterol/metabolismo , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Proteínas Nucleares/genética , Animais , Diferenciação Celular/fisiologia , Movimento Celular , Modelos Animais de Doenças , Células-Tronco Embrionárias/metabolismo , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Mutagênese Insercional , Mutação , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Proteínas Nucleares/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
15.
medRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333415

RESUMO

Background: To date, it is still controversial whether tau phosphorylation plays a role in Huntington's disease (HD), as previous studies demonstrated either no alterations or increases in phosphorylated tau (pTau) in HD post-mortem brain and mouse models. Objectives: The goal of this study was to determine whether total tau and pTau levels are altered in HD. Methods: Immunohistochemistry, cellular fractionations, and western blots were used to measure tau and pTau levels in a large cohort of HD and control post-mortem prefrontal cortex (PFC). Furthermore, western blots were performed to assess tau, and pTau levels in HD and control isogenic embryonic stem cell (ESC)-derived cortical neurons and neuronal stem cells (NSCs). Similarly, western blots were used to assess tau and pTau in Htt Q111 and transgenic R6/2 mice. Lastly, total tau levels were assessed in HD and healthy control plasma using Quanterix Simoa assay. Results: Our results revealed that, while there was no difference in tau or pTau levels in HD PFC compared to controls, tau phosphorylated at S396 levels were increased in PFC samples from HD patients 60 years or older at time of death. Additionally, tau and pTau levels were not changed in HD ESC-derived cortical neurons and NSCs. Similarly, tau or pTau levels were not altered in Htt Q111 and transgenic R6/2 mice compared to wild-type littermates. Lastly, tau levels were not changed in plasma from a small cohort of HD patients compared to controls. Conclusion: Together these findings demonstrate that pTau-S396 levels increase significantly with age in HD PFC.

16.
J Huntingtons Dis ; 12(3): 267-281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694372

RESUMO

BACKGROUND: To date, it is still controversial whether tau phosphorylation plays a role in Huntington's disease (HD), as previous studies demonstrated either no alterations or increases in phosphorylated tau (pTau) in HD postmortem brain and mouse models. OBJECTIVE: The goal of this study was to determine whether total tau and pTau levels are altered in HD. METHODS: Immunohistochemistry, cellular fractionations, and western blots were used to measure total tau and pTau levels in a large cohort of HD and control postmortem prefrontal cortex (PFC). Furthermore, western blots were performed to assess tau, and pTau levels in HD and control isogenic embryonic stem cell (ESC)-derived cortical neurons and neuronal stem cells (NSCs). Similarly, western blots were used to assess tau and pTau levels in HttQ111 and transgenic R6/2 mice. Lastly, total tau levels were assessed in HD and healthy control plasma using Quanterix Simoa assay. RESULTS: Our results revealed that, while there was no difference in total tau or pTau levels in HD PFC compared to controls, the levels of tau phosphorylated at S396 were increased in PFC samples from HD patients 60 years or older at time of death. Additionally, tau and pTau levels were not changed in HD ESC-derived cortical neurons and NSCs. Similarly, total tau or pTau levels were not altered in HttQ111 and transgenic R6/2 mice compared to wild-type littermates. Lastly, tau levels were not changed in plasma from a small cohort of HD patients compared to controls. CONCLUSIONS: Together these findings demonstrate that pTau-S396 levels increase significantly with age in HD PFC.


Assuntos
Doença de Huntington , Camundongos , Animais , Humanos , Doença de Huntington/metabolismo , Fosforilação , Serina/metabolismo , Camundongos Transgênicos , Córtex Pré-Frontal/metabolismo , Modelos Animais de Doenças
17.
J Neurosci ; 31(38): 13400-11, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21940433

RESUMO

Prenatal cocaine exposure impairs brain development and produces lasting alterations in cognitive function. In a prenatal cocaine exposure mouse model, we found that tangential migration of GABA neurons from the basal to the dorsal forebrain and radial neuron migration within the dorsal forebrain were significantly decreased during the embryonic period. The decrease in the tangential migration occurred early in gestation and normalized by late gestation, despite ongoing cocaine exposure. The decrease in radial migration was associated with altered laminar positioning of neurons in the medial prefrontal cortex. The cocaine exposure led to transient decreases in the expression of Tbr2 and Tbr1, transcription factors associated with intermediate progenitor cells and newborn neurons of the dorsal forebrain, respectively, although neurogenesis was not significantly altered. Since cocaine can modulate brain derived neurotrophic factor (BDNF) expression in the mature brain, we examined whether cocaine can alter BDNF expression in the embryonic brain. We found a transient decrease in BDNF protein expression in the cocaine-exposed embryonic forebrain early in gestation. By late gestation, the BDNF expression recovered to control levels, despite ongoing cocaine exposure. In basal forebrain explants from cocaine-exposed embryos, cell migration was significantly decreased, corroborating the in vivo data on tangential GABA neuron migration. Since BDNF can influence tangential neuronal migration, we added BDNF to the culture medium and observed increased cell migration. Our data suggest that cocaine can alter tangential and radial neuronal migration as well as BDNF expression in the embryonic brain and that decreased BDNF may mediate cocaine's effects on neuronal migration.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Movimento Celular/efeitos dos fármacos , Cocaína/farmacologia , Neurônios/fisiologia , Prosencéfalo/efeitos dos fármacos , Fatores Etários , Animais , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Morte Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proteínas de Ligação a DNA/biossíntese , Embrião de Mamíferos , Feminino , Técnicas de Introdução de Genes/métodos , Glutamato Descarboxilase/genética , Camundongos , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Nucleares/biossíntese , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/metabolismo , Prosencéfalo/fisiologia , Proteínas com Domínio T/biossíntese , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/biossíntese , Ácido gama-Aminobutírico/fisiologia
18.
J Neurochem ; 120(2): 202-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22043863

RESUMO

Recent evidence suggests that the persistence of cocaine seeking during periods of protracted drug abstinence following chronic cocaine exposure is mediated, in part, by neuroadaptations in the mesolimbic dopamine system. Specifically, incubation of cocaine-seeking behavior coincides with increased brain-derived neurotrophic factor (BDNF) protein expression in the ventral tegmental area (VTA). However, the molecular mechanisms that regulate time-dependent changes in VTA BDNF protein expression during cocaine abstinence are unclear. The goal of these experiments was to determine whether VTA BDNF transcript levels are altered following cocaine abstinence and identify the molecular mechanisms regulating cocaine-induced changes in VTA BDNF transcription. Rats were allowed to self-administer cocaine (0.25 mg/infusion, i.v.) for 14 days on a fixed-ratio schedule of reinforcement followed by 7 days of forced drug abstinence. BDNF protein and exon I-containing transcripts were significantly increased in the VTA of cocaine-experienced rats following 7 days of forced drug abstinence compared to yoked saline controls. Cocaine-induced changes in BDNF mRNA were associated with increased acetylation of histone 3 and binding of CREB-binding protein to exon I-containing promoters in the VTA. Taken together, these results suggest that drug abstinence following cocaine self-administration remodels chromatin in the VTA resulting in increased expression of BDNF, which may contribute to neuroadaptations underlying cocaine craving and relapse.


Assuntos
Anestésicos Locais/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação a CREB/metabolismo , Cocaína/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Área Tegmentar Ventral/metabolismo , Acetilação/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Imunoprecipitação da Cromatina , Transtornos Relacionados ao Uso de Cocaína , Condicionamento Operante/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática/métodos , Masculino , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Esquema de Reforço , Autoadministração , Estatísticas não Paramétricas , Síndrome de Abstinência a Substâncias/metabolismo , Fatores de Tempo , Área Tegmentar Ventral/efeitos dos fármacos
19.
Neurobiol Dis ; 46(2): 351-61, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22590724

RESUMO

We have previously demonstrated amelioration of Huntington's disease (HD)-related phenotypes in R6/2 transgenic mice in response to treatment with the novel histone deacetylase (HDAC) inhibitor 4b. Here we have measured the selectivity profiles of 4b and related compounds against class I and class II HDACs and have tested their ability to restore altered expression of genes related to HD pathology in mice and to rescue disease effects in cell culture and Drosophila models of HD. R6/2 transgenic and wild-type (wt) mice received daily injections of HDAC inhibitors for 3 days followed by real-time PCR analysis to detect expression differences for 13 HD-related genes. We find that HDACi 4b and 136, two compounds showing high potency for inhibiting HDAC3 were most effective in reversing the expression of genes relevant to HD, including Ppp1r1b, which encodes DARPP-32, a marker for medium spiny striatal neurons. In contrast, compounds targeting HDAC1 were less effective at correcting gene expression abnormalities in R6/2 transgenic mice, but did cause significant increases in the expression of selected genes. An additional panel of 4b-related compounds was tested in a Drosophila model of HD and in STHdhQ111 striatal cells to further distinguish HDAC selectivity. Significant improvement in huntingtin-elicited Drosophila eye neurodegeneration in the fly was observed in response to treatment with compounds targeting human HDAC1 and/or HDAC3. In STHdhQ111 striatal cells, the ability of HDAC inhibitors to improve huntingtin-elicited metabolic deficits correlated with the potency at inhibiting HDAC1 and HDAC3, although the IC50 values for HDAC1 inhibition were typically 10-fold higher than for inhibition of HDAC3. Assessment of HDAC protein localization in brain tissue by Western blot analysis revealed accumulation of HDAC1 and HDAC3 in the nucleus of HD transgenic mice compared to wt mice, with a concurrent decrease in cytoplasmic localization, suggesting that these HDACs contribute to a repressive chromatin environment in HD. No differences were detected in the localization of HDAC2, HDAC4 or HDAC7. These results suggest that inhibition of HDACs 1 and 3 can relieve HD-like phenotypes in model systems and that HDAC inhibitors targeting these isotypes might show therapeutic benefit in human HD.


Assuntos
Modelos Animais de Doenças , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases/metabolismo , Doença de Huntington/enzimologia , Doença de Huntington/genética , Peptídeos/fisiologia , Fenótipo , Animais , Células Cultivadas , Drosophila melanogaster , Sistemas de Liberação de Medicamentos/métodos , Células HCT116 , Histona Desacetilase 1/metabolismo , Humanos , Doença de Huntington/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos
20.
Nat Neurosci ; 11(3): 344-53, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18278040

RESUMO

Increases in dopamine and glutamate transmission in the nucleus accumbens independently promote the reinstatement of cocaine seeking, an animal model of relapse. Here we have tested whether cocaine reinstatement in rats depends on interactions between accumbal dopamine and glutamate systems that are mediated by Ca(2+)/calmodulin-mediated kinase II (CaMKII). We show that stimulation of D1-like dopamine receptors in the nucleus accumbens shell reinstates cocaine seeking by activating L-type Ca(2+) channels and CaMKII. Cocaine reinstatement is associated with D1-like dopamine receptor-dependent increases in accumbens shell CaMKII phosphorylated on Thr286 and glutamate receptor 1 (GluR1) phosphorylated on Ser831 (a known CaMKII phosphorylation site), in addition to increases in cell-surface expression of GluR1-containing AMPA receptors in the shell. Consistent with these findings, cocaine reinstatement is attenuated by intra-shell administration of AAV10-GluR1-C99, a vector that impairs the transport of GluR1-containing AMPA receptors. Thus, CaMKII may be an essential link between accumbens shell dopamine and glutamate systems involved in the neuronal plasticity underlying cocaine craving and relapse.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Sítios de Ligação/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Diltiazem/farmacologia , Agonistas de Dopamina/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Masculino , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiopatologia , Fosforilação/efeitos dos fármacos , Transporte Proteico/genética , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/metabolismo , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D1/metabolismo , Transmissão Sináptica/fisiologia , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA