Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Virol ; 97(2): e0142322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36692289

RESUMO

Concurrent infections with multiple pathogens are often described in cattle with respiratory illness. However, how the host-pathogen interactions influence the clinical outcome has been only partially explored in this species. Influenza D virus (IDV) was discovered in 2011. Since then, IDV has been detected worldwide in different hosts. A significant association between IDV and bacterial pathogens in sick cattle was shown in epidemiological studies, especially with Mycoplasma bovis. In an experimental challenge, IDV aggravated M. bovis-induced pneumonia. However, the mechanisms through which IDV drives an increased susceptibility to bacterial superinfections remain unknown. Here, we used the organotypic lung model precision-cut lung slices to study the interplay between IDV and M. bovis coinfection. Our results show that a primary IDV infection promotes M. bovis superinfection by increasing the bacterial replication and the ultrastructural damages in lung pneumocytes. In our model, IDV impaired the innate immune response triggered by M. bovis by decreasing the expression of several proinflammatory cytokines and chemokines that are important for immune cell recruitment and the bacterial clearance. Stimulations with agonists of cytosolic helicases and Toll-like receptors (TLRs) revealed that a primary activation of RIG-I/MDA5 desensitizes the TLR2 activation, similar to what was observed with IDV infection. The cross talk between these two pattern recognition receptors leads to a nonadditive response, which alters the TLR2-mediated cascade that controls the bacterial infection. These results highlight innate immune mechanisms that were not described for cattle so far and improve our understanding of the bovine host-microbe interactions and IDV pathogenesis. IMPORTANCE Since the spread of the respiratory influenza D virus (IDV) infection to the cattle population, the question about the impact of this virus on bovine respiratory disease (BRD) remains still unanswered. Animals affected by BRD are often coinfected with multiple pathogens, especially viruses and bacteria. In particular, viruses are suspected to enhance secondary bacterial superinfections. Here, we use an ex vivo model of lung tissue to study the effects of IDV infection on bacterial superinfections. Our results show that IDV increases the susceptibility to the respiratory pathogen Mycoplasma bovis. In particular, IDV seems to activate immune pathways that inhibit the innate immune response against the bacteria. This may allow M. bovis to increase its proliferation and to delay its clearance from lung tissue. These results suggest that IDV could have a negative impact on the respiratory pathology of cattle.


Assuntos
Doenças dos Bovinos , Interações entre Hospedeiro e Microrganismos , Infecções por Mycoplasma , Infecções por Orthomyxoviridae , Transdução de Sinais , Thogotovirus , Animais , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/virologia , Mycoplasma bovis/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Transdução de Sinais/imunologia , Superinfecção/imunologia , Superinfecção/veterinária , Receptor 2 Toll-Like , Interações entre Hospedeiro e Microrganismos/imunologia , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/virologia
2.
PLoS Pathog ; 16(6): e1008661, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32598377

RESUMO

Mycoplasmas are host-restricted prokaryotes with a nearly minimal genome. To overcome their metabolic limitations, these wall-less bacteria establish intimate interactions with epithelial cells at mucosal surfaces. The alarming rate of antimicrobial resistance among pathogenic species is of particular concern in the medical and veterinary fields. Taking advantage of the reduced mycoplasma genome, random transposon mutagenesis was combined with high-throughput screening in order to identify key determinants of mycoplasma survival in the host-cell environment and potential targets for drug development. With the use of the ruminant pathogen Mycoplasma bovis as a model, three phosphodiesterases of the DHH superfamily were identified as essential for the proliferation of this species under cell culture conditions, while dispensable for axenic growth. Despite a similar domain architecture, recombinant Mbov_0327 and Mbov_0328 products displayed different substrate specificities. While rMbovP328 protein exhibited activity towards cyclic dinucleotides and nanoRNAs, rMbovP327 protein was only able to degrade nanoRNAs. The Mbov_0276 product was identified as a member of the membrane-associated GdpP family of phosphodiesterases that was found to participate in cyclic dinucleotide and nanoRNA degradation, an activity which might therefore be redundant in the genome-reduced M. bovis. Remarkably, all these enzymes were able to convert their substrates into mononucleotides, and medium supplementation with nucleoside monophosphates or nucleosides fully restored the capacity of a Mbov_0328/0327 knock-out mutant to grow under cell culture conditions. Since mycoplasmas are unable to synthesize DNA/RNA precursors de novo, cyclic dinucleotide and nanoRNA degradation are likely contributing to the survival of M. bovis by securing the recycling of purines and pyrimidines. These results point toward proteins of the DHH superfamily as promising targets for the development of new antimicrobials against multidrug-resistant pathogenic mycoplasma species.


Assuntos
Proteínas de Bactérias/metabolismo , Mycoplasma bovis/enzimologia , Pirofosfatases/metabolismo , Ribonucleases/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Camundongos , Camundongos Endogâmicos BALB C , Mycoplasma bovis/genética , Pirofosfatases/genética , Ribonucleases/genética
3.
PLoS Genet ; 15(1): e1007910, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668569

RESUMO

Horizontal Gene Transfer was long thought to be marginal in Mycoplasma a large group of wall-less bacteria often portrayed as minimal cells because of their reduced genomes (ca. 0.5 to 2.0 Mb) and their limited metabolic pathways. This view was recently challenged by the discovery of conjugative exchanges of large chromosomal fragments that equally affected all parts of the chromosome via an unconventional mechanism, so that the whole mycoplasma genome is potentially mobile. By combining next generation sequencing to classical mating and evolutionary experiments, the current study further explored the contribution and impact of this phenomenon on mycoplasma evolution and adaptation using the fluoroquinolone enrofloxacin (Enro), for selective pressure and the ruminant pathogen Mycoplasma agalactiae, as a model organism. For this purpose, we generated isogenic lineages that displayed different combination of spontaneous mutations in Enro target genes (gyrA, gyrB, parC and parE) in association to gradual level of resistance to Enro. We then tested whether these mutations can be acquired by a susceptible population via conjugative chromosomal transfer knowing that, in our model organism, the 4 target genes are scattered in three distinct and distant loci. Our data show that under antibiotic selective pressure, the time scale of the mutational pathway leading to high-level of Enro resistance can be readily compressed into a single conjugative step, in which several EnroR alleles were transferred from resistant to susceptible mycoplasma cells. In addition to acting as an accelerator for antimicrobial dissemination, mycoplasma chromosomal transfer reshuffled genomes beyond expectations and created a mosaic of resistant sub-populations with unpredicted and unrelated features. Our findings provide insights into the process that may drive evolution and adaptability of several pathogenic Mycoplasma spp. via an unconventional conjugative mechanism.


Assuntos
Evolução Molecular , Transferência Genética Horizontal/genética , Mycoplasma agalactiae/genética , Seleção Genética/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Enrofloxacina/farmacologia , Fluoroquinolonas/farmacologia , Transferência Genética Horizontal/efeitos dos fármacos , Genoma/efeitos dos fármacos , Genômica , Mycoplasma agalactiae/efeitos dos fármacos , Seleção Genética/efeitos dos fármacos
4.
Mol Microbiol ; 89(6): 1226-39, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23888872

RESUMO

Horizontal gene transfer (HGT) is a major force of microbial evolution but was long thought to be marginal in mycoplasmas. In silico detection of exchanged regions and of loci encoding putative Integrative Conjugative Elements (ICE) in several mycoplasma genomes challenged this view, raising the prospect of these simple bacteria being able to conjugate. Using the model pathogen Mycoplasma agalactiae, we demonstrated for the first time that one of these elements, ICEA, is indeed self-transmissible. As a hallmark of conjugative processes, ICEA transfers were DNase resistant and required viable cells. ICEA acquisition conferred ICE-negative strains with the new ability to conjugate, allowing the spread of ICEA. Analysis of transfer-deficient mutants indicated that this process requires an ICEA-encoded lipoprotein of unknown function, CDS14. Formation of a circular extrachromosomal intermediate and the subsequent chromosomal integration of ICEA involved CDS22, an ICEA-encoded product distantly related to the ISLre2 transposase family. Remarkably, ICEA has no specific or no preferential integration site, often resulting in gene disruptions. Occurrence of functional mycoplasma ICE offers these bacteria with a means for HGT, a phenomenon with far-reaching implications given their minute-size genome and the number of species that are pathogenic for a broad host-range.


Assuntos
Conjugação Genética , Sequências Repetitivas Dispersas , Mycoplasma agalactiae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transferência Genética Horizontal , Lipoproteínas/genética , Lipoproteínas/metabolismo
5.
BMC Microbiol ; 12: 257, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-23145790

RESUMO

BACKGROUND: The evolution of mycoplasmas from a common ancestor with Firmicutes has been characterized not only by genome down-sizing but also by horizontal gene transfer between mycoplasma species sharing a common host. The mechanisms of these gene transfers remain unclear because our knowledge of the mycoplasma mobile genetic elements is limited. In particular, only a few plasmids have been described within the Mycoplasma genus. RESULTS: We have shown that several species of ruminant mycoplasmas carry plasmids that are members of a large family of elements and replicate via a rolling-circle mechanism. All plasmids were isolated from species that either belonged or were closely related to the Mycoplasma mycoides cluster; none was from the Mycoplasma bovis-Mycoplasma agalactiae group. Twenty one plasmids were completely sequenced, named and compared with each other and with the five mycoplasma plasmids previously reported. All plasmids share similar size and genetic organization, and present a mosaic structure. A peculiar case is that of the plasmid pMyBK1 from M. yeatsii; it is larger in size and is predicted to be mobilizable. Its origin of replication and replication protein were identified. In addition, pMyBK1 derivatives were shown to replicate in various species of the M. mycoides cluster, and therefore hold considerable promise for developing gene vectors. The phylogenetic analysis of these plasmids confirms the uniqueness of pMyBK1 and indicates that the other mycoplasma plasmids cluster together, apart from the related replicons found in phytoplasmas and in species of the clade Firmicutes. CONCLUSIONS: Our results unraveled a totally new picture of mycoplasma plasmids. Although they probably play a limited role in the gene exchanges that participate in mycoplasma evolution, they are abundant in some species. Evidence for the occurrence of frequent genetic recombination strongly suggests they are transmitted between species sharing a common host or niche.


Assuntos
DNA Bacteriano/genética , Variação Genética , Mycoplasma mycoides/genética , Plasmídeos , Animais , Análise por Conglomerados , DNA Bacteriano/química , Ordem dos Genes , Transferência Genética Horizontal , Dados de Sequência Molecular , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/veterinária , Mycoplasma mycoides/isolamento & purificação , Filogenia , Recombinação Genética , Ruminantes , Análise de Sequência de DNA
6.
BMC Vet Res ; 8: 146, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22920649

RESUMO

BACKGROUND: The genetic diversity of Mycoplasma agalactiae (MA) isolates collected in Spain from goats in an area with contagious agalactia (CA) was assessed using a set of validated and new molecular typing methods. Validated methods included pulsed field gel electrophoresis (PFGE), variable number of tandem repeats (VNTR) typing, and Southern blot hybridization using a set of MA DNA probes, including those for typing the vpma genes repertoire. New approaches were based on PCR and targeted genomic regions that diverged between strains as defined by in silico genomic comparisons of sequenced MA genomes. RESULTS: Overall, the data showed that all typing tools yielded consistent results, with the VNTR analyses being the most rapid method to differentiate the MA isolates with a discriminatory ability comparable to that of PFGE and of a set of new PCR assays. All molecular typing approaches indicated that the Spanish isolates from the endemic area in Murcia were very diverse, with different clonal isolates probably restricted to separate, but geographically close, local areas. CONCLUSIONS: The important genetic diversity of MA observed in infected goats from Spain contrasts with the overall homogeneity of the genomic background encountered in MA from sheep with CA in Southern France or Italy, suggesting that assessment of the disease status in endemic areas may require different approaches in sheep and in goats. A number of congruent sub-typing tools are now available for the differentiation of caprine isolates with comparable discriminatory powers.


Assuntos
Variação Genética , Doenças das Cabras/microbiologia , Infecções por Mycoplasma/veterinária , Mycoplasma agalactiae/genética , Animais , Eletroforese em Gel de Campo Pulsado , Doenças das Cabras/epidemiologia , Cabras , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/microbiologia , Mycoplasma agalactiae/isolamento & purificação , Espanha/epidemiologia
7.
Microb Genom ; 8(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35576144

RESUMO

DNA methylations play an important role in the biology of bacteria. Often associated with restriction modification (RM) systems, they are important drivers of bacterial evolution interfering in horizontal gene transfer events by providing a defence against foreign DNA invasion or by favouring genetic transfer through production of recombinogenic DNA ends. Little is known regarding the methylome of the Mycoplasma genus, which encompasses several pathogenic species with small genomes. Here, genome-wide detection of DNA methylations was conducted using single molecule real-time (SMRT) and bisulphite sequencing in several strains of Mycoplasma agalactiae, an important ruminant pathogen and a model organism. Combined with whole-genome analysis, this allowed the identification of 19 methylated motifs associated with three orphan methyltransferases (MTases) and eight RM systems. All systems had a homolog in at least one phylogenetically distinct Mycoplasma spp. Our study also revealed that several superimposed genetic events may participate in the M. agalactiae dynamic epigenomic landscape. These included (i) DNA shuffling and frameshift mutations that affect the MTase and restriction endonuclease content of a clonal population and (ii) gene duplication, erosion, and horizontal transfer that modulate MTase and RM repertoires of the species. Some of these systems were experimentally shown to play a major role in mycoplasma conjugative, horizontal DNA transfer. While the versatility of DNA methylation may contribute to regulating essential biological functions at cell and population levels, RM systems may be key in mycoplasma genome evolution and adaptation by controlling horizontal gene transfers.


Assuntos
Enzimas de Restrição-Modificação do DNA , Mycoplasma agalactiae , Enzimas de Restrição-Modificação do DNA/genética , Epigenoma , Transferência Genética Horizontal , Genoma Bacteriano , Mycoplasma agalactiae/genética
8.
Bio Protoc ; 11(2): e3893, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33732782

RESUMO

In Mycoplasma agalactiae, two simultaneous processes of DNA transfer have been described that require direct cell-to-cell contact and are similar to conjugation. One involves the self-transmission of an integrative conjugative element (ICE) while the second concerns the horizontal transfer of large and small fragments of chromosomal DNA. Here, we describe an optimized conjugation protocol for the horizontal transfer of ICE or chromosomal DNA carrying antibiotic resistance markers (i.e., tetracycline, gentamicin, puromycin) from donor to recipient mycoplasma cells. Calculation of the conjugation frequencies, selection and characterization of transconjugants are detailed. This protocol has been developed with M. agalactiae but has been successfully used for M. bovis and can be adapted to other related mycoplasma species.

9.
Infect Immun ; 78(4): 1542-51, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20123713

RESUMO

Mycoplasmas are minimal bacteria whose genomes barely exceed the smallest amount of information required to sustain autonomous life. Despite this apparent simplicity, several mycoplasmas are successful pathogens of humans and animals, in which they establish intimate interactions with epithelial cells at mucosal surfaces. To identify biological functions mediating mycoplasma interactions with mammalian cells, we produced a library of transposon knockout mutants in the ruminant pathogen Mycoplasma agalactiae and used this library to identify mutants displaying a growth-deficient pheonotype in cell culture. M. agalactiae mutants displaying a 3-fold reduction in CFU titers to nearly complete extinction in coculture with HeLa cells were identified. Mapping of transposon insertion sites revealed 18 genomic regions putatively involved in the interaction of M. agalactiae with HeLa cells. Several of these regions encode proteins with features of membrane lipoproteins and/or were involved in horizontal gene transfer with phylogenetically distant pathogenic mycoplasmas of ruminants. Two mutants with the most extreme phenotype carry a transposon in a genomic region designated the NIF locus which encodes homologues of SufS and SufU, two proteins presumably involved in [Fe-S] cluster biosynthesis in Gram-positive bacteria. Complementation studies confirmed the conditional essentiality of the NIF locus, which was found to be critical for proliferation in the presence of HeLa cells and several other mammalian cell lines but dispensable for axenic growth. While our results raised questions regarding essential functions in mycoplasmas, they also provide a means for studying the role of mycoplasmas as minimal pathogens.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/fisiologia , Mycoplasma agalactiae/patogenicidade , Fatores de Virulência/fisiologia , Proteínas de Bactérias/genética , Técnicas de Cocultura , Contagem de Colônia Microbiana , Elementos de DNA Transponíveis , Células Epiteliais/microbiologia , Técnicas de Inativação de Genes , Genes Essenciais , Teste de Complementação Genética , Células HeLa , Humanos , Mutagênese Insercional , Mycoplasma agalactiae/genética , Mycoplasma agalactiae/crescimento & desenvolvimento , Fatores de Virulência/genética
10.
BMC Genomics ; 11: 86, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20122262

RESUMO

BACKGROUND: While the genomic era is accumulating a tremendous amount of data, the question of how genomics can describe a bacterial species remains to be fully addressed. The recent sequencing of the genome of the Mycoplasma agalactiae type strain has challenged our general view on mycoplasmas by suggesting that these simple bacteria are able to exchange significant amount of genetic material via horizontal gene transfer. Yet, events that are shaping mycoplasma genomes and that are underlining diversity within this species have to be fully evaluated. For this purpose, we compared two strains that are representative of the genetic spectrum encountered in this species: the type strain PG2 which genome is already available and a field strain, 5632, which was fully sequenced and annotated in this study. RESULTS: The two genomes differ by ca. 130 kbp with that of 5632 being the largest (1006 kbp). The make up of this additional genetic material mainly corresponds (i) to mobile genetic elements and (ii) to expanded repertoire of gene families that encode putative surface proteins and display features of highly-variable systems. More specifically, three entire copies of a previously described integrative conjugative element are found in 5632 that accounts for ca. 80 kbp. Other mobile genetic elements, found in 5632 but not in PG2, are the more classical insertion sequences which are related to those found in two other ruminant pathogens, M. bovis and M. mycoides subsp. mycoides SC. In 5632, repertoires of gene families encoding surface proteins are larger due to gene duplication. Comparative proteomic analyses of the two strains indicate that the additional coding capacity of 5632 affects the overall architecture of the surface and suggests the occurrence of new phase variable systems based on single nucleotide polymorphisms. CONCLUSION: Overall, comparative analyses of two M. agalactiae strains revealed a very dynamic genome which structure has been shaped by gene flow among ruminant mycoplasmas and expansion-reduction of gene repertoires encoding surface proteins, the expression of which is driven by localized genetic micro-events.


Assuntos
Hibridização Genômica Comparativa , Evolução Molecular , Mycoplasma agalactiae/genética , Proteômica/métodos , Sequência de Aminoácidos , Sequência de Bases , DNA Bacteriano/genética , Fluxo Gênico , Pool Gênico , Transferência Genética Horizontal , Genoma Bacteriano , Dados de Sequência Molecular , Família Multigênica , Mutagênese Insercional , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
11.
J Bacteriol ; 191(13): 4111-21, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19376859

RESUMO

Mycoplasma agalactiae, an important pathogen of small ruminants, exhibits a very versatile surface architecture by switching multiple, related lipoproteins (Vpmas) on and off. In the type strain, PG2, Vpma phase variation is generated by a cluster of six vpma genes that undergo frequent DNA rearrangements via site-specific recombination. To further comprehend the degree of diversity that can be generated at the M. agalactiae surface, the vpma gene repertoire of a field strain, 5632, was analyzed and shown to contain an extended repertoire of 23 vpma genes distributed between two loci located 250 kbp apart. Loci I and II include 16 and 7 vpma genes, respectively, with all vpma genes of locus II being duplicated at locus I. Several Vpmas displayed a chimeric structure suggestive of homologous recombination, and a global proteomic analysis further indicated that at least 13 of the 16 Vpmas can be expressed by the 5632 strain. Because a single promoter is present in each vpma locus, concomitant Vpma expression can occur in a strain with duplicated loci. Consequently, the number of possible surface combinations is much higher for strain 5632 than for the type strain. Finally, our data suggested that insertion sequences are likely to be involved in 5632 vpma locus duplication at a remote chromosomal position. The role of such mobile genetic elements in chromosomal shuffling of genes encoding major surface components may have important evolutionary and epidemiological consequences for pathogens, such as mycoplasmas, that have a reduced genome and no cell wall.


Assuntos
Proteínas de Bactérias/genética , Evolução Molecular , Mycoplasma agalactiae/genética , Transferência Genética Horizontal/genética , Immunoblotting , Modelos Genéticos , Reação em Cadeia da Polimerase , Proteômica , Recombinação Genética/genética
12.
Front Microbiol ; 10: 2441, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708906

RESUMO

The capacity of Mycoplasmas to engage in horizontal gene transfers has recently been highlighted. Despite their small genome, some of these wall-less bacteria are able to exchange multiple, large portions of their chromosome via a conjugative mechanism that does not conform to canonical Hfr/oriT models. To understand the exact features underlying mycoplasma chromosomal transfer (MCT), extensive genomic analyses were performed at the nucleotide level, using individual mating progenies derived from our model organism, Mycoplasma agalactiae. Genome reconstruction showed that MCT resulted in the distributive transfer of multiple chromosomal DNA fragments and generated progenies composed of a variety of mosaic genomes, each being unique. Analyses of macro- and micro-events resulting from MCT revealed that the vast majority of the acquired fragments were unrelated and co-transferred independently from the selection marker, these resulted in up to 17% of the genome being exchanged. Housekeeping and accessory genes were equally affected by MCT, with up to 35 CDSs being gained or lost. This efficient HGT process also created a number of chimeric genes and genetic micro-variations that may impact gene regulation and/or expression. Our study unraveled the tremendous plasticity of M. agalactiae genome and point toward MCT as a major player in diversification and adaptation to changing environments, offering a significant advantage to this minimal pathogen.

13.
Sci Rep ; 9(1): 13554, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537861

RESUMO

Mycoplasma hominis is an opportunistic human pathogen associated with genital and neonatal infections. Until this study, the lack of a reliable transformation method for the genetic manipulation of M. hominis hindered the investigation of the pathogenicity and the peculiar arginine-based metabolism of this bacterium. A genomic analysis of 20 different M. hominis strains revealed a number of putative restriction-modification systems in this species. Despite the presence of these systems, a reproducible polyethylene glycol (PEG)-mediated transformation protocol was successfully developed in this study for three different strains: two clinical isolates and the M132 reference strain. Transformants were generated by transposon mutagenesis with an efficiency of approximately 10-9 transformants/cell/µg plasmid and were shown to carry single or multiple mini-transposons randomly inserted within their genomes. One M132-mutant was observed to carry a single-copy transposon inserted within the gene encoding P75, a protein potentially involved in adhesion. However, no difference in adhesion was observed in cell-assays between this mutant and the M132 parent strain. Whole genome sequencing of mutants carrying multiple copies of the transposon further revealed the occurrence of genomic rearrangements. Overall, this is the first time that genetically modified strains of M. hominis have been obtained by random mutagenesis using a mini-transposon conferring resistance to tetracycline.


Assuntos
Elementos de DNA Transponíveis , Mycoplasma hominis/genética , Sequenciamento Completo do Genoma/métodos , Tamanho do Genoma , Genoma Bacteriano , Mutação , Mycoplasma hominis/classificação , Polietilenoglicóis/química
14.
Front Microbiol ; 10: 2753, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849895

RESUMO

Microbial access to host nutrients is a key factor of the host-pathogen interplay. With their nearly minimal genome, wall-less bacteria of the class Mollicutes have limited metabolic capacities and largely depend on host nutrients for their survival. Despite these limitations, host-restricted mycoplasmas are widely distributed in nature and many species are pathogenic for humans and animals. Yet, only partial information is available regarding the mechanisms evolved by these minimal pathogens to meet their nutrients and the contribution of these mechanisms to virulence. By using the ruminant pathogen Mycoplasma bovis as a model system, extracellular DNA (eDNA) was identified as a limiting nutrient for mycoplasma proliferation under cell culture conditions. Remarkably, the growth-promoting effect induced by supplementation with eDNA was associated with important cytotoxicity for actively dividing host cells, but not confluent monolayers. To identify biological functions mediating M. bovis cytotoxicity, we produced a library of transposon knockout mutants and identified three critical genomic regions whose disruption was associated with a non-cytopathic phenotype. The coding sequences (CDS) disrupted in these regions pointed towards pyruvate metabolism as contributing to M. bovis cytotoxicity. Hydrogen peroxide was found responsible for eDNA-mediated M. bovis cytotoxicity, and non-cytopathic mutants were unable to produce this toxic metabolic compound. In our experimental conditions, no contact between M. bovis and host cells was required for cytotoxicity. Further analyses revealed important intra-species differences in eDNA-mediated cytotoxicity and H2O2 production, with some strains displaying a cytopathic phenotype despite no H2O2 production. Interestingly, the genome of strains PG45 and HB0801 were characterized by the occurrence of insertion sequences (IS) at close proximity to several CDSs found disrupted in non-cytopathic mutants. Since PG45 and HB0801 produced no or limited amount of H2O2, IS-elements might influence H2O2 production in M. bovis. These results confirm the multifaceted role of eDNA in microbial communities and further identify this ubiquitous material as a nutritional trigger of M. bovis cytotoxicity. M. bovis may thus take advantage of the multiple sources of eDNA in vivo to modulate its interaction with host cells, a way for this minimal pathogen to overcome its limited coding capacity.

15.
mBio ; 9(4)2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970462

RESUMO

The discovery of integrative conjugative elements (ICEs) in wall-less mycoplasmas and the demonstration of their role in massive gene flows within and across species have shed new light on the evolution of these minimal bacteria. Of these, the ICE of the ruminant pathogen Mycoplasma agalactiae (ICEA) represents a prototype and belongs to a new clade of the Mutator-like superfamily that has no preferential insertion site and often occurs as multiple chromosomal copies. Here, functional genomics and mating experiments were combined to address ICEA functions and define the minimal ICEA chassis conferring conjugative properties to M. agalactiae Data further indicated a complex interaction among coresident ICEAs, since the minimal ICEA structure was influenced by the occurrence of additional ICEA copies that can trans-complement conjugation-deficient ICEAs. However, this cooperative behavior was limited to the CDS14 surface lipoprotein, which is constitutively expressed by coresident ICEAs, and did not extend to other ICEA proteins, including the cis-acting DDE recombinase and components of the mating channel whose expression was detected only sporadically. Remarkably, conjugation-deficient mutants containing a single ICEA copy knocked out in cds14 can be complemented by neighboring cells expressing CDS14. This result, together with those revealing the conservation of CDS14 functions in closely related species, may suggest a way for mycoplasma ICEs to extend their interaction outside their chromosomal environment. Overall, this report provides a first model of conjugative transfer in mycoplasmas and offers valuable insights into understanding horizontal gene transfer in this highly adaptive and diverse group of minimal bacteria.IMPORTANCE Integrative conjugative elements (ICEs) are self-transmissible mobile genetic elements that are key mediators of horizontal gene flow in bacteria. Recently, a new category of ICEs was identified that confer conjugative properties to mycoplasmas, a highly adaptive and diverse group of wall-less bacteria with reduced genomes. Unlike classical ICEs, these mobile elements have no preferential insertion specificity, and multiple mycoplasma ICE copies can be found randomly integrated into the host chromosome. Here, the prototype ICE of Mycoplasma agalactiae was used to define the minimal conjugative machinery and to propose the first model of ICE transfer in mycoplasmas. This model unveils the complex interactions taking place among coresident ICEs and suggests a way for these elements to extend their influence outside their chromosomal environment. These data pave the way for future studies aiming at deciphering chromosomal transfer, an unconventional mechanism of DNA swapping that has been recently associated with mycoplasma ICEs.


Assuntos
Transferência Genética Horizontal , Sequências Repetitivas Dispersas , Mycoplasma agalactiae/genética , Conjugação Genética , Técnicas de Inativação de Genes , Teste de Complementação Genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
16.
PLoS One ; 10(3): e0119000, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25746296

RESUMO

Mycoplasma bovis is a cause of pneumonia, mastitis, arthritis and otitis media in cattle throughout the world. However, despite its clinical significance, there is a paucity of tools to genetically manipulate it, impeding our capacity to further explore the molecular basis of its virulence. To address this limitation, we developed a series of homologous and heterologous replicable plasmids from M. bovis and M. agalactiae. The shortest replicable oriC plasmid based on the region downstream of dnaA in M. bovis was 247 bp and contained two DnaA boxes, while oriC plasmids based on the region downstream of dnaA in M. agalactiae strains 5632 and PG2 were 219 bp and 217 bp in length, respectively, and contained only a single DnaA box. The efficiency of transformation in M. bovis and M. agalactiae was inversely correlated with the size of the oriC region in the construct, and, in general, homologous oriC plasmids had a higher transformation efficiency than heterologous oriC plasmids. The larger pWholeoriC45 and pMM21-7 plasmids integrated into the genomic oriC region of M. bovis, while the smaller oriC plasmids remained extrachromosomal for up to 20 serial passages in selective media. Although specific gene disruptions were not be achieved in M. bovis in this study, the oriC plasmids developed here could still be useful as tools in complementation studies and for expression of exogenous genes in both M. bovis and M. agalactiae.


Assuntos
Interações Hospedeiro-Patógeno , Mycoplasma agalactiae/fisiologia , Mycoplasma bovis/fisiologia , Plasmídeos , Ruminantes/microbiologia , Animais , Recombinação Homóloga , Mycoplasma agalactiae/genética , Mycoplasma bovis/genética , Complexo de Reconhecimento de Origem
17.
PLoS One ; 9(4): e93970, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24699671

RESUMO

Mechanisms underlying pathogenic processes in mycoplasma infections are poorly understood, mainly because of limited sequence similarities with classical, bacterial virulence factors. Recently, large-scale transposon mutagenesis in the ruminant pathogen Mycoplasma agalactiae identified the NIF locus, including nifS and nifU, as essential for mycoplasma growth in cell culture, while dispensable in axenic media. To evaluate the importance of this locus in vivo, the infectivity of two knock-out mutants was tested upon experimental infection in the natural host. In this model, the parental PG2 strain was able to establish a systemic infection in lactating ewes, colonizing various body sites such as lymph nodes and the mammary gland, even when inoculated at low doses. In these PG2-infected ewes, we observed over the course of infection (i) the development of a specific antibody response and (ii) dynamic changes in expression of M. agalactiae surface variable proteins (Vpma), with multiple Vpma profiles co-existing in the same animal. In contrast and despite a sensitive model, none of the knock-out mutants were able to survive and colonize the host. The extreme avirulent phenotype of the two mutants was further supported by the absence of an IgG response in inoculated animals. The exact role of the NIF locus remains to be elucidated but these data demonstrate that it plays a key role in the infectious process of M. agalactiae and most likely of other pathogenic mycoplasma species as many carry closely related homologs.


Assuntos
Proteínas de Bactérias/genética , Infecções por Mycoplasma/veterinária , Mycoplasma agalactiae/genética , Mycoplasma agalactiae/patogenicidade , Doenças dos Ovinos/microbiologia , Ovinos/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Feminino , Loci Gênicos , Interações Hospedeiro-Patógeno , Mutação , Infecções por Mycoplasma/microbiologia , Mycoplasma agalactiae/fisiologia
18.
mBio ; 5(6): e01958, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25425234

RESUMO

UNLABELLED: Horizontal gene transfer (HGT) is a main driving force of bacterial evolution and innovation. This phenomenon was long thought to be marginal in mycoplasmas, a large group of self-replicating bacteria characterized by minute genomes as a result of successive gene losses during evolution. Recent comparative genomic analyses challenged this paradigm, but the occurrence of chromosomal exchanges had never been formally addressed in mycoplasmas. Here, we demonstrated the conjugal transfer of large chromosomal regions within and among ruminant mycoplasma species, with the incorporation of the incoming DNA occurring by homologous recombination into the recipient chromosome. By combining classical mating experiments with high-throughput next-generation sequencing, we documented the transfer of almost every position of the mycoplasma chromosome. Mycoplasma conjugation relies on the occurrence of an integrative conjugative element (ICE) in at least one parent cell. While ICE propagates horizontally from ICE-positive to ICE-negative cells, chromosomal transfers (CTs) occurred in the opposite direction, from ICE-negative to ICE-positive cells, independently of ICE movement. These findings challenged the classical mechanisms proposed for other bacteria in which conjugative CTs are driven by conjugative elements, bringing into the spotlight a new means for rapid mycoplasma innovation. Overall, they radically change our current views concerning the evolution of mycoplasmas, with particularly far-reaching implications given that over 50 species are human or animal pathogens. IMPORTANCE: Horizontal gene transfers (HGT) shape bacterial genomes and are key contributors to microbial diversity and innovation. One main mechanism involves conjugation, a process that allows the simultaneous transfer of significant amounts of DNA upon cell-to-cell contact. Recognizing and deciphering conjugal mechanisms are thus essential in understanding the impact of gene flux on bacterial evolution. We addressed this issue in mycoplasmas, the smallest and simplest self-replicating bacteria. In these organisms, HGT was long thought to be marginal. We showed here that nearly every position of the Mycoplasma agalactiae chromosome could be transferred via conjugation, using an unconventional mechanism. The transfer involved DNA blocks containing up to 80 genes that were incorporated into the host chromosome by homologous recombination. These findings radically change our views concerning mycoplasma evolution and adaptation with particularly far-reaching implications given that over 50 species are human or animal pathogens.


Assuntos
Cromossomos Bacterianos , Transferência Genética Horizontal , Sequências Repetitivas Dispersas , Mycoplasma agalactiae/genética , Conjugação Genética , Recombinação Homóloga
19.
Comp Immunol Microbiol Infect Dis ; 35(5): 487-96, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22584004

RESUMO

Mycoplasma agalactiae causes chronic infections in small ruminants and remains endemic in many regions of the world, despite intensive and costly eradication programs. In this study, the innate genomic plasticity of M. agalactiae was exploited to design and assess a combination of molecular epidemiological tools to trace the pathogen in different geographic locations and to understand its emergence or re-emergence after eradication campaigns. For this purpose, two collections of M. agalactiae isolates, representing European outbreaks or localized endemic disease in a single region of France, were subjected to RFLP (Restriction Fragment Length Polymorphism) analyses using two sets of DNA probes (distributed across the genome and specific for the vpma gene locus), and a previously described VNTR (Variable Number Tandem Repeats) analysis. A combination of four genome-specific DNA probes and two VNTRs gave the highest discriminative power. Molecular typing revealed that, while isolates from diverse geographical origins fell into clearly different groups, the endemic disease repeatedly observed in the Western Pyrenees region over the past 30 years has been caused by a unique subtype of M. agalactiae. This indicates that the re-emergence of the pathogen after seemingly successful eradication programs is not due to the importation of exotic strains, but to the persistence of local reservoirs of infection.


Assuntos
DNA Bacteriano/genética , Variação Genética , Tipagem Molecular/métodos , Mycoplasma agalactiae/genética , Animais , Técnicas de Tipagem Bacteriana/métodos , Doenças Transmissíveis Emergentes/microbiologia , Sondas de DNA/genética , DNA Bacteriano/análise , Erradicação de Doenças , Doenças Endêmicas , França/epidemiologia , Genes Bacterianos , Repetições Minissatélites , Epidemiologia Molecular/métodos , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/prevenção & controle , Mycoplasma agalactiae/classificação , Polimorfismo de Fragmento de Restrição
20.
PLoS One ; 6(9): e25291, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21966487

RESUMO

Mycoplasma agalactiae is an important pathogen of small ruminants, in which it causes contagious agalactia. It belongs to a large group of "minimal bacteria" with a small genome and reduced metabolic capacities that are dependent on their host for nutrients. Mycoplasma survival thus relies on intimate contact with host cells, but little is known about the factors involved in these interactions or in the more general infectious process. To address this issue, an assay based on goat epithelial and fibroblastic cells was used to screen a M. agalactiae knockout mutant library. Mutants with reduced growth capacities in cell culture were selected and 62 genomic loci were identified as contributing to this phenotype. As expected for minimal bacteria, "transport and metabolism" was the functional category most commonly implicated in this phenotype, but 50% of the selected mutants were disrupted in coding sequences (CDSs) with unknown functions, with surface lipoproteins being most commonly represented in this category. Since mycoplasmas lack a cell wall, lipoproteins are likely to be important in interactions with the host. A few intergenic regions were also identified that may act as regulatory sequences under co-culture conditions. Interestingly, some mutants mapped to gene clusters that are highly conserved across mycoplasma species but located in different positions. One of these clusters was found in a transcriptionally active region of the M. agalactiae chromosome, downstream of a cryptic promoter. A possible scenario for the evolution of these loci is discussed. Finally, several CDSs identified here are conserved in other important pathogenic mycoplasmas, and some were involved in horizontal gene transfer with phylogenetically distant species. These results provide a basis for further deciphering functions mediating mycoplasma-host interactions.


Assuntos
Mycoplasma agalactiae/genética , Mycoplasma agalactiae/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Linhagem Celular , Genoma Bacteriano , Cabras , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Mutação , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA