Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Annu Rev Biomed Eng ; 26(1): 25-47, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38166186

RESUMO

Hyaluronan (HA) plays well-recognized mechanical and biological roles in articular cartilage and synovial fluid, where it contributes to tissue structure and lubrication. An understanding of how HA contributes to the structure of other musculoskeletal tissues, including muscle, bone, tendon, and intervertebral discs, is growing. In addition, the use of HA-based therapies to restore damaged tissue is becoming more prevalent. Nevertheless, the relationship between biomechanical stimuli and HA synthesis, degradation, and signaling in musculoskeletal tissues remains understudied, limiting the utility of HA in regenerative medicine. In this review, we discuss the various roles and significance of endogenous HA in musculoskeletal tissues. We use what is known and unknown to motivate new lines of inquiry into HA biology within musculoskeletal tissues and in the mechanobiology governing HA metabolism by suggesting questions that remain regarding the relationship and interaction between biological and mechanical roles of HA in musculoskeletal health and disease.


Assuntos
Ácido Hialurônico , Tendões , Ácido Hialurônico/química , Humanos , Animais , Fenômenos Biomecânicos , Tendões/fisiologia , Tendões/metabolismo , Cartilagem Articular/fisiologia , Cartilagem Articular/metabolismo , Transdução de Sinais , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Líquido Sinovial/metabolismo , Líquido Sinovial/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Sistema Musculoesquelético/metabolismo , Medicina Regenerativa/métodos
2.
Proc Natl Acad Sci U S A ; 116(49): 24881-24891, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31754034

RESUMO

Dependence on the 26S proteasome is an Achilles' heel for triple-negative breast cancer (TNBC) and multiple myeloma (MM). The therapeutic proteasome inhibitor, bortezomib, successfully targets MM but often leads to drug-resistant disease relapse and fails in breast cancer. Here we show that a 26S proteasome-regulating kinase, DYRK2, is a therapeutic target for both MM and TNBC. Genome editing or small-molecule mediated inhibition of DYRK2 significantly reduces 26S proteasome activity, bypasses bortezomib resistance, and dramatically delays in vivo tumor growth in MM and TNBC thereby promoting survival. We further characterized the ability of LDN192960, a potent and selective DYRK2-inhibitor, to alleviate tumor burden in vivo. The drug docks into the active site of DYRK2 and partially inhibits all 3 core peptidase activities of the proteasome. Our results suggest that targeting 26S proteasome regulators will pave the way for therapeutic strategies in MM and TNBC.


Assuntos
Bortezomib/farmacologia , Processos Neoplásicos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , TYK2 Quinase/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Linhagem Celular Tumoral , Feminino , Edição de Genes , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mieloma Múltiplo , Fosforilação , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Neoplasias de Mama Triplo Negativas/patologia , Quinases Dyrk
3.
NMR Biomed ; 33(3): e4233, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31820518

RESUMO

Mechanical and microstructural evaluations of cortical bone using ultrashort echo time magnetic resonance imaging (UTE-MRI) have been performed increasingly in recent years. UTE-MRI acquires considerable signal from cortical bone and enables quantitative bone evaluations. Fitting bone apparent transverse magnetization (T2*) decay using a bicomponent model has been regularly performed to estimate bound water (BW) and pore water (PW) in the quantification of bone matrix and porosity, respectively. Human cortical bone possesses a considerable amount of fat, which appears as MRI T2* signal oscillation and can subsequently lead to BW overestimation when using a bicomponent model. Tricomponent T2* fitting model has been developed to improve BW and PW estimations by accounting for fat contribution in the MRI signal. This study aimed to investigate the correlations of microstructural and mechanical properties of human cortical bone with water pool fractions obtained from a tricomponent T2* model. 135 cortical bone strips (~4 × 2 × 40 mm3 ) from tibial and femoral midshafts of 37 donors (61 ± 24 years old) were scanned using ten sets of dual-echo 3D-UTE-Cones sequences (TE = 0.032-24.0 ms) on a 3 T MRI scanner for T2* fitting analyses. Average bone porosity and pore size were measured using microcomputed tomography (µCT) at 9 µm voxel size. Bone mechanical properties were measured using 4-point bending tests. Using a tricomponent model, bound water fraction (FracBW ) showed significant strong (R = 0.70, P < 0.01) and moderate (R = 0.58-0.62, P < 0.01) correlations with porosity and mechanical properties, respectively. Correlations of bone microstructural and mechanical properties with water pool fractions were higher for tricomponent model results compared with the bicomponent model. The tricomponent T2* fitting model is suggested as a useful technique for cortical bone evaluation where the MRI contribution of bone fat is accounted for.


Assuntos
Osso Cortical/diagnóstico por imagem , Osso Cortical/fisiologia , Imageamento por Ressonância Magnética , Prótons , Água/química , Fenômenos Biomecânicos , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Microtomografia por Raio-X
4.
NMR Biomed ; 32(2): e4045, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30549338

RESUMO

Intracortical bone porosity is a key microstructural parameter that determines bone mechanical properties. While clinical MRI visualizes the cortical bone with a signal void, ultrashort echo time (UTE) MRI can acquire high signal from cortical bone, thus enabling quantitative assessments. Magnetization transfer (MT) imaging combined with UTE-MRI can indirectly assess protons in the bone collagenous matrix, which are inversely related to porosity. This study aimed to examine UTE-MT MRI techniques to evaluate intracortical bone porosity. Eighteen human cortical bone specimens from the tibial and fibular midshafts were scanned using UTE-MT sequences on a clinical 3 T MRI scanner and on a high-resolution micro-computed tomography (µCT) scanner. A series of MT pulse saturation powers (500°, 1000°, 1500°) and frequency offsets (2, 5, 10, 20, 50 kHz) were used to measure the macromolecular fraction (MMF) and macromolecular T2 (T2MM ) using a two-pool MT model. The measurements were made on 136 different regions of interest (ROIs). ROIs were selected at three cortical bone layers (from endosteum to periosteum) and four anatomical sites (anterior, mid-medial, mid-lateral, and posterior) to provide a wide range of porosity. MMF showed moderate to strong correlations with intracortical bone porosity (R = -0.67 to -0.73, p < 0.01) and bone mineral density (BMD) (R = +0.46 to +0.70, p < 0.01). Comparing the average MMF between cortical bone layers revealed a significant increase from the endosteum towards the periosteum. Such a pattern was in agreement with porosity reduction and BMD increase towards the periosteum. These results suggest that the two-pool UTE-MT technique can potentially serve as a novel and accurate tool to assess intracortical bone porosity.


Assuntos
Colágeno/metabolismo , Osso Cortical/diagnóstico por imagem , Imageamento por Ressonância Magnética , Prótons , Microtomografia por Raio-X , Idoso , Densidade Óssea , Feminino , Humanos , Substâncias Macromoleculares/metabolismo , Masculino , Pessoa de Meia-Idade , Porosidade , Tíbia/diagnóstico por imagem , Fatores de Tempo
6.
NMR Biomed ; 31(11): e3994, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30059184

RESUMO

Bone stress injury (BSI) incidents have been increasing amongst athletes in recent years as a result of more intense sporting activities. Cortical bone in the tibia and fibula is one of the most common BSI sites. Nowadays, clinical magnetic resonance imaging (MRI) is the recommended technique for BSI diagnosis at an early stage. However, clinical MRI focuses on edema observations in surrounding soft tissues, rather than the injured components of the bone. Specifically, both normal and injured bone are invisible in conventional clinical MRI. In contrast, ultrashort echo time (UTE)-MRI is able to detect the rapidly decaying signal from the bone. This study aimed to employ UTE-MRI for fatigue fracture detection in fibula cortical bone through an ex vivo investigation. Fourteen human fibular samples (47 ± 20 years old, four women) were subjected to cyclic loading on a four-point bending setup. The loading was displacement controlled to induce -5000 ± 1500 µ-strain at 4 Hz. Loading was stopped when bone stiffness was reduced by 20%. Fibula samples were imaged twice, using UTE-MRI and micro-computed tomography (µCT), first pre-loading and second post-loading. After loading, the macromolecular fraction (MMF) from UTE-MT modeling demonstrated a significant decrease (12% ± 20%, P = 0.02) on average. Single-component T2 * also decreased significantly by BSI (12% ± 11%, P = 0.01) on average. MMF reduction is hypothesized to be a result of collagenous matrix rupture and water increase. However, faster T2 * decay might be a result of water shifts towards newly developed microcracks with higher susceptibility. Despite this good sensitivity level of the UTE-MRI technique, the µCT-based porosity at a voxel size of 9 µm was not affected by loading. UTE-MRI shows promise as a new quantitative technique to detect BSI.


Assuntos
Osso Cortical/diagnóstico por imagem , Osso Cortical/patologia , Fíbula/diagnóstico por imagem , Fíbula/patologia , Fraturas de Estresse/diagnóstico por imagem , Fraturas de Estresse/diagnóstico , Imageamento por Ressonância Magnética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Suporte de Carga
7.
Eur Spine J ; 27(4): 739-751, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29460012

RESUMO

PURPOSE: To elucidate the effects of growth differentiation factor-6 (GDF6) on: (i) gene expression of inflammatory/pain-related molecules and structural integrity in the rabbit intervertebral disc (IVD) degeneration model, and (ii) sensory dysfunction and changes in pain-marker expression in dorsal nerve ganglia (DRGs) in the rat xenograft radiculopathy model. METHODS: Forty-six adolescent rabbits received anular-puncture in two non-consecutive lumbar IVDs. Four weeks later, phosphate-buffered saline (PBS) or GDF6 (1, 10 or 100 µg) was injected into the nucleus pulposus (NP) of punctured discs and followed for 4 weeks for gene expression analysis and 12 weeks for structural analyses. For pain assessment, eight rabbits were sacrificed at 4 weeks post-injection and NP tissues of injected discs were transplanted onto L5 DRGs of 16 nude rats to examine mechanical allodynia. The rat DRGs were analyzed immunohistochemically. RESULTS: In GDF6-treated rabbit NPs, gene expressions of interleukin-6, tumor necrosis factor-α, vascular endothelial growth factor, prostaglandin-endoperoxide synthase 2, and nerve growth factor were significantly lower than those in the PBS group. GDF6 injections resulted in partial restoration of disc height and improvement of MRI disc degeneration grades with statistical significance in rabbit structural analyses. Allodynia induced by xenograft transplantation of rabbit degenerated NPs onto rat DRGs was significantly reduced by GDF6 injection. Staining intensities for ionized calcium-binding adaptor molecule-1 and calcitonin gene-related peptide in rat DRGs of the GDF6 group were significantly lower than those of the PBS group. CONCLUSION: GDF6 injection may change the pathological status of degenerative discs and attenuate degenerated IVD-induced pain.


Assuntos
Fator 6 de Diferenciação de Crescimento/farmacologia , Hiperalgesia/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Radiculopatia/metabolismo , Animais , Distinções e Prêmios , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Gânglios Espinais/metabolismo , Xenoenxertos , Imuno-Histoquímica , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Imageamento por Ressonância Magnética , Proteínas dos Microfilamentos/metabolismo , Fator de Crescimento Neural/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Punções , Coelhos , Radiculopatia/patologia , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Microtomografia por Raio-X
8.
Nano Lett ; 17(8): 4873-4880, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28657755

RESUMO

Nanoparticle (NP) based exogenous contrast agents assist biomedical imaging by enhancing the target visibility against the background. However, it is challenging to design a single type of contrast agents that are simultaneously suitable for various imaging modalities. The simple integration of different components into a single NP contrast agent does not guarantee the optimized properties of each individual components. Herein, we describe lanthanide-based core-shell-shell (CSS) NPs as triple-modal contrast agents that have concurrently enhanced performance compared to their individual components in photoluminescence (PL) imaging, magnetic resonance imaging (MRI), and computed tomography (CT). The key to simultaneous enhancement of PL intensity, MRI r1 relaxivity, and X-ray attenuation capability in CT is tuning the interfacial layer in the CSS NP architecture. By increasing the thickness of the interfacial layer, we show that (i) PL intensity is enhanced from completely quenched/dark state to brightly emissive state of both upconversion and downshifting luminescence at different excitation wavelengths (980 and 808 nm), (ii) MRI r1 relaxivity is enhanced by 5-fold from 11.4 to 52.9 mM-1 s-1 (per Gd3+) at clinically relevant field strength 1.5 T, and (iii) the CT Hounsfield Unit gain is 70% higher than the conventional iodine-based agents at the same mass concentration. Our results demonstrate that judiciously designed contrast agents for multimodal imaging can achieve simultaneously enhanced performance compared to their individual stand-alone structures and highlight that multimodality can be achieved without compromising on individual modality performance.


Assuntos
Meios de Contraste/química , Elementos da Série dos Lantanídeos/química , Nanoconchas/química , Luz , Medições Luminescentes/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tamanho da Partícula , Fenômenos Físicos , Propriedades de Superfície , Tomografia Computadorizada por Raios X/métodos
9.
Aesthet Surg J ; 38(11): 1213-1224, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29415242

RESUMO

BACKGROUND: Liposuction is one of the most performed cosmetic surgery procedures. In a previously reported study, gold-nanoparticle (GNP) laser-assisted liposuction (NanoLipo) was shown to improve procedure parameters and outcomes in a porcine model. OBJECTIVES: An ex vivo human liposuction model was developed to assess the ease, efficacy, and outcomes of NanoLipo, and to further explore its mechanism of action in facilitating liposuction. METHODS: NanoLipo was compared to a control without GNPs in sets of fresh, nonperfused, anatomically symmetric, matched tissue specimens from 12 patients. A subset of three experiments was performed under single-blinded conditions. Intraoperative assessments included lipoaspirate volume, percentage of free oil, ease of removal, and temperature rise. Specimens were palpated, visualized for evenness, and graded with and without skin. Postoperative assessment included viability staining of the lipoaspirate and remaining tissues. Microcomputed tomography was used to assess the distribution of infused GNPs within the tissues. RESULTS: NanoLipo consistently removed more adipose tissue with more liberated triglycerides compared to control. NanoLipo specimens were smoother, thinner, and had fewer and smaller irregularities. Infused solutions preferentially distributed between fibrous membranes and fat pearls. After NanoLipo, selective structural-tissue disruptions, indicated by loss of metabolic activity, were observed. Thus, NanoLipo likely creates a bimodal mechanism of action whereby fat lobules are dislodged from surrounding fibro-connective tissue, while lipolysis is simultaneously induced. CONCLUSIONS: NanoLipo showed many advantages compared to control under blinded and nonblinded conditions. This technology may be promising in facilitating fat removal.


Assuntos
Ouro/administração & dosagem , Hipertermia Induzida/métodos , Lipectomia/métodos , Nanopartículas Metálicas/administração & dosagem , Fotoquimioterapia/métodos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/cirurgia , Humanos , Hipertermia Induzida/instrumentação , Lasers , Lipectomia/instrumentação , Fotoquimioterapia/instrumentação , Método Simples-Cego
10.
Skeletal Radiol ; 43(9): 1217-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24878837

RESUMO

PURPOSE: To quantify MR properties of discs from cadaveric human temporomandibular joints (TMJ) using quantitative conventional and ultrashort time-to-echo magnetic resonance imaging (UTE MRI) techniques and to corroborate regional variation in the MR properties with that of biomechanical indentation stiffness. METHODS: This study was exempt from the institutional review board approval. Cadaveric (four donors, two females, 74 ± 10.7 years) TMJs were sliced (n = 14 slices total) sagittally and imaged using quantitative techniques of conventional spin echo T2 (SE T2), UTE T2*, and UTE T1rho. The discs were then subjected to biomechanical indentation testing, which is performed by compressing the tissue with the blunt end of a small solid cylinder. Regional variations in MR and indentation stiffness were correlated. TMJ of a healthy volunteer was also imaged to show in vivo feasibility. RESULTS: Using the ME SE T2 and the UTE T1rho techniques, a significant (each p < 0.0001) inverse relation between MR and indentation stiffness properties was observed for the data in the lower range of stiffness. However, the strength of correlation was significantly higher (p < 0.05) for UTE T1rho (R(2) = 0.42) than SE T2 (R(2) = 0.19) or UTE T2* (R(2) = 0.02, p = 0.1) techniques. CONCLUSION: The UTE T1rho technique, applicable in vivo, facilitated quantitative evaluation of TMJ discs and showed a high sensitivity to biomechanical softening of the TMJ discs. With additional work, the technique may become a useful surrogate measure for loss of biomechanical integrity of TMJ discs reflecting degeneration.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Disco da Articulação Temporomandibular/anatomia & histologia , Disco da Articulação Temporomandibular/fisiologia , Idoso , Cadáver , Força Compressiva/fisiologia , Módulo de Elasticidade/fisiologia , Feminino , Dureza/fisiologia , Testes de Dureza , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA