RESUMO
A neurological disorder is a problem with the neural system of the body, as a brain tumor is one of the deadliest neurological conditions and it requires an early and effective detection procedure. The existing detection and diagnosis methods for image evaluation are based on the judgment of the radiologist and neurospecialist, where a risk of human mistakes can be found. Therefore, a new flanged method and methodology for detecting brain tumors using magnetic resonance imaging and the artificial neural network (ANN) technique are applied. The research is based on an artificial neural network-based behavioral examination of neurological disorders. In this study, an artificial neural network is used to detect a brain tumor as early as possible. The current work develops an effective approach for detecting cancer from a given brain MRI and recognizing the retrieved data for further use. To obtain the desired result, the following three procedures are used: preprocessing, feature extraction, training, and detection or classification. A Gaussian filter is also incorporated to eliminate noise from the image, and for texture feature extraction, GLCM is considered in this study. Further entropy, contrast, energy, homogeneity, and other GLCM texture properties of tumor categorization are measured using the ANFIS approach, which determines if the tumor is normal, benign, or malignant. Future research will focus on applying advanced texture analysis to classify brain tumors into distinct classes in order to improve the accuracy of brain tumor diagnosis. In the future, MRI brain imaging will be used to classify metastatic brain tumors.
Assuntos
Algoritmos , Neoplasias Encefálicas , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , NeuroimagemRESUMO
This article examines distinctive techniques for monitoring the condition of fishes in underwater and also provides tranquil procedures after catching the fishes. Once the fishes are hooked, two different techniques that are explicitly designed for smoking and drying are implemented for saving the time of fish suppliers. Existing methods do not focus on the optimization algorithms for solving this issue. When considering the optimization problem, the solution is adequate for any number of inputs at time t. For this combined new flanged technique, a precise system model has been designed and incorporated with a set of rules using contention protocols. In addition, the designed system is also instigated with a whale optimization algorithm that is having sufficient capability to test the different parameters of assimilated sensing devices using different sensors. Further to test the effectiveness of the proposed method, an online monitoring system has been presented that can monitor and in turn provides the consequences using a simulation model for better understanding. Moreover, after examining the simulation results under three different scenarios, it has been observed that the proposed method provides an enhancement in real-time monitoring systems for an average of 78%.