Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 257(5): 93, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017788

RESUMO

MAIN CONCLUSION: This report is a first comprehensive work on the potential of engineered nickel oxide nanoparticles affecting the epigenome and modulating global methylation leading to retention of transgenerational footprints. Nickel oxide nanoparticles (NiO-NPs) are known to instigate extensive phenotypic and physiological damage to plants. In the present work, it was shown that exposure to increasing concentrations of NiO-NP-induced cell death cascades in model systems, Allium cepa and tobacco BY-2 cells. NiO-NP also generated variation in global CpG methylation; its transgenerational transmission was shown in affected cells. Plant tissues exposed to NiO-NP showed progressive replacement of essential cations, like Fe and Mg, as seen in XANES and ICP-OES data, providing earliest signs of disturbed ionic homeostasis. Fluorescent staining based confocal microscopy confirmed upsurge of H2O2 and nitric oxide after NiO-NP exposure. A NiO-NP concentration gradient-based switching-on of the cell death cascades was observed when autophagosomes were seen in samples exposed to lower and median concentrations of NiO-NP (10-125 mg L-1). The apoptotic cell death marker, caspase-3 like protein, was noted in the median to higher doses (50-500 mg L-1), and leakage of lactate dehydrogenase marking necrotic cell death was observed in samples exposed to the highest doses (125-500 mg L-1) of NiO-NP. Concomitant increase of DNA hypermethylation (quantified by ELISA-based assay) and genomic DNA damage (evaluated through Comet-based analyses) was recorded at higher doses of NiO-NP. MSAP profiles confirmed that global methylation changes incurring in the parental generation upon NiO-NP exposure were transmitted through the two subsequent generations of BY-2 cells which was supported by data from A. cepa, too. Thus, it was evident that NiO-NP exposure incited DNA hypermethylation, as an aftermath of oxidative burst, and led to induction of autophagy, apoptotic and necrotic cell death pathways. Global methylation changes induced by NiO-NP exposure can be transmitted through subsequent cell generations.


Assuntos
Peróxido de Hidrogênio , Nanopartículas , Metilação , Células Vegetais , Morte Celular , Necrose
2.
J Mater Sci Mater Med ; 26(2): 118, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25672596

RESUMO

The current study describes the in-depth characterization of agar-gelatin based co-hydrogels, emulgels and bigels to have an insight about the differences in the properties of the formulations. Hydrogels have been extensively studied as vehicle for controlled drug release, whereas, the concept of emulgels and bigels is relatively new. The formulations were characterized by scanning electron microscopy, FTIR spectroscopy, XRD and mechanical properties. The biocompatibility and the ability of the formulations to be used as drug delivery vehicle were also studied. The scanning electron micrographs suggested the presence of internal phases within the agar-gelatin composite matrices of co-hydrogel, emulgel and bigel. FTIR and XRD studies suggested higher crystallinity of emulgels and bigels. Electrical impedance and mechanical stability of the emulgel and the bigel was higher than the hydrogel. The prepared formulations were found to be biocompatible and suitable for drug delivery applications.


Assuntos
Ágar/química , Preparações de Ação Retardada/síntese química , Gelatina/química , Hidrogéis/química , Metronidazol/química , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/química , Força Compressiva , Difusão , Módulo de Elasticidade , Dureza , Teste de Materiais , Metronidazol/administração & dosagem , Transição de Fase
3.
Front Plant Sci ; 12: 586509, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633755

RESUMO

Scientists anxiously follow instances of heavy metals augmenting in the environment and undergoing bioaccumulation and trace their biomagnification across food webs, wary of their potent toxicity on biological entities. Engineered nanoparticles supplement natural pools of respective heavy metals and can mimic their effects, exerting toxicity at higher concentrations. Thus, a thorough understanding of the underlying mechanism of this precarious interaction is mandatory. Most urban and industrial environments contain considerable quantities of nickel oxide nanoparticles. These in excess can cause considerable damage to plant metabolism through a significant increase in cellular reactive oxygen species and perturbation of its cross-talk with the reactive nitrogen species. In the present work, the authors have demonstrated how the intrusion of nickel oxide nanoparticles (NiO-NP) affected the exposed roots of Allium cepa: starting with disruption of cell membranes, before being interiorized within cell organelles, effectively disrupting cellular homeostasis and survival. A major shift in the reactive oxygen species (ROS) and nitric oxide (NO) equanimity was also observed, unleashing major altercations in several crucial biochemical profiles. Altered antioxidant contents and upregulation of stress-responsive genes, namely, Catalase, Ascorbate peroxidase, Superoxide dismutase, and Rubisco activase, showing on average 50-250% rise across NiO-NP concentrations tested, also entailed increased cellular hydrogen peroxide contents, with tandem rise in cellular NO. Increased NO content was evinced from altered concentrations of nitric oxide synthase and nitrate reductase, along with NADPH oxidase, when compared with the negative control. Though initially showing a dose-dependent concomitant rise, a significant decrease of NO was observed at higher concentrations of NiO-NP, while cellular ROS continued to increase. Modified K/Na ratios, with increased proline concentrations and GABA contents, all hallmarks of cellular stress, correlated with ROS-NO perturbations. Detailed studies showed that NiO-NP concentration had a significant role in inducing toxicity, perturbing the fine balance of ROS-NO, which turned lethal for the cell at higher dosages of the ENP precipitating in the accumulation of stress markers and an inevitable shutdown of cellular mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA