Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
1.
J Virol ; 98(2): e0196423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289100

RESUMO

Guanarito virus (GTOV) is the causative agent of Venezuelan hemorrhagic fever. GTOV belongs to the genus Mammarenavirus, family Arenaviridae and has been classified as a Category A bioterrorism agent by the United States Centers for Disease Control and Prevention. Despite being a high-priority agent, vaccines and drugs against Venezuelan hemorrhagic fever are not available. GTOV S-26764, isolated from a non-fatal human case, produces an unclear cytopathic effect (CPE) in Vero cells, posing a significant obstacle to research and countermeasure development efforts. Vero cell-adapted GTOV S-26764 generated in this study produced clear CPE and demonstrated rapid growth and high yield in Vero cells compared to the original GTOV S-26764. We developed a reverse genetics system for GTOV to study amino acid changes acquired through Vero cell adaptation and leading to virus phenotype changes. The results demonstrated that E1497K in the L protein was responsible for the production of clear plaques as well as enhanced viral RNA replication and transcription efficiency. Vero cell-adapted GTOV S-26764, capable of generating CPE, will allow researchers to easily perform neutralization assays and anti-drug screening against GTOV. Moreover, the developed reverse genetics system will accelerate vaccine and antiviral drug development.IMPORTANCEGuanarito virus (GTOV) is a rodent-borne virus. GTOV causes fever, prostration, headache, arthralgia, cough, sore throat, nausea, vomiting, diarrhea, epistaxis, bleeding gums, menorrhagia, and melena in humans. The lethality rate is 23.1% or higher. Vero cell-adapted GTOV S-26764 shows a clear cytopathic effect (CPE), whereas the parental virus shows unclear CPE in Vero cells. We generated a reverse genetics system to rescue recombinant GTOVs and found that E1497K in the L protein was responsible for the formation of clear plaques as well as enhanced viral RNA replication and transcription efficiency. This reverse genetic system will accelerate vaccine and antiviral drug developments, and the findings of this study contribute to the understanding of the function of GTOV L as an RNA polymerase.


Assuntos
Arenaviridae , Genética Reversa , Animais , Feminino , Humanos , Arenaviridae/genética , Infecções por Arenaviridae/virologia , Arenavirus do Novo Mundo/genética , Chlorocebus aethiops , Febres Hemorrágicas Virais/virologia , Fenótipo , Genética Reversa/métodos , Vacinas , Células Vero
2.
Emerg Infect Dis ; 30(1): 177-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086399

RESUMO

Two human patients with Macacine alphaherpesvirus 1 infection were identified in Japan in 2019. Both patients had worked at the same company, which had a macaque facility. The rhesus-genotype B virus genome was detected in cerebrospinal fluid samples from both patients.


Assuntos
Herpesvirus Cercopitecino 1 , Doenças dos Macacos , Animais , Humanos , Japão/epidemiologia , Macaca mulatta , Genótipo
3.
PLoS Pathog ; 18(6): e1010553, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653397

RESUMO

Nelson Bay orthoreovirus (NBV), a member of the family Reoviridae, genus Orthoreovirus, is a bat-borne virus that causes respiratory diseases in humans. NBV encodes two unique nonstructural proteins, fusion-associated small transmembrane (FAST) protein and p17 protein, in the S1 gene segment. FAST induces cell-cell fusion between infected cells and neighboring cells and the fusogenic activity is required for efficient viral replication. However, the function of p17 in the virus cycle is not fully understood. Here, various p17 mutant viruses including p17-deficient viruses were generated by a reverse genetics system for NBV. The results demonstrated that p17 is not essential for viral replication and does not play an important role in viral pathogenesis. On the other hand, NBV p17 regulated viral replication in a bat cell line but not in other human and animal cell lines. Nuclear localization of p17 is associated with the regulation of NBV replication in bat cells. We also found that p17 dramatically enhances the cell-cell fusion activity of NBV FAST protein for efficient replication in bat cells. Furthermore, we found that a protein homologue of NBV p17 from another bat-borne orthoreovirus, but not those of avian orthoreovirus or baboon orthoreovirus, also supported efficient viral replication in bat cells using a p17-deficient virus-based complementation approach. These results provide critical insights into the functioning of the unique replication machinery of bat-borne viruses in their natural hosts.


Assuntos
Quirópteros , Orthoreovirus , Reoviridae , Animais , Anticorpos Antivirais , Vírus de DNA , Orthoreovirus/genética , Replicação Viral
4.
J Epidemiol ; 34(3): 129-136, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37032110

RESUMO

BACKGROUND: For therapeutic efficacy, molnupiravir and nirmatrelvir-ritonavir must be started to treat patients within 5 days of disease onset to treat patients with novel coronavirus disease 2019 (COVID-19). However, some patients spend more than 5 days from disease onset before reporting to the Public Health Office. This study aimed to clarify the characteristics of patients with reporting delay. METHODS: This study included data from 12,399 patients with COVID-19 who reported to the Public Health Office from March 3rd, 2021 to June 30th, 2021. Patients were stratified into "linked" (n = 7,814) and "unlinked" (n = 4,585) cases depending on whether they were linked to other patients. A long reporting delay was defined as the difference between the onset and reporting dates of 5 days or more. Univariate and multivariate analyses were performed using log-binomial regression to identify factors related to long reporting delay, and prevalence ratios with corresponding 95% confidence intervals were calculated. RESULTS: The proportion of long reporting delay was 24.4% (1,904/7,814) and 29.3% (1,344/4,585) in linked and unlinked cases, respectively. Risks of long reporting delay among linked cases were living alone and onset on the day with a higher 7-day daily average confirmed cases or onset on weekends; whereas, risks for unlinked cases were age over 65 years, without occupation, and living alone. CONCLUSION: Our results suggest the necessity to establish a Public Health Office system that is less susceptible to the rapid increase in the number of patients, promotes educational activities for people with fewer social connections, and improves access to health care.


Assuntos
COVID-19 , Humanos , Idoso , COVID-19/epidemiologia , SARS-CoV-2 , Saúde Pública , Japão/epidemiologia
5.
J Epidemiol ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38735739

RESUMO

BackgroundDisasters such as earthquakes, terrorism, and pandemics have triggered post-traumatic stress disorder (PTSD), and discrimination against the affected individuals has been linked to the development of PTSD. However, there is limited evidence regarding the association between discrimination against coronavirus disease 2019 (COVID-19) patients and probable PTSD in Japan.MethodsWe conducted a cross-sectional study utilizing a web-based questionnaire targeting individuals who had contracted the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Sapporo City. A total of 4247 individuals with laboratory-confirmed SARS-CoV-2 infection spanning from February 2020 to February 2022 completed the questionnaire (response rate: 15.9%). Probable PTSD was measured using the three-item Posttraumatic Diagnostic Scale. The stratified exact logistic regression was applied to calculate the odds ratios (OR) of probable PTSD for COVID-19-related discrimination with adjusted factors.ResultsThis study included 3626 patients who had a history of SARS-CoV-2 infection. Among them, 321 patients (8.9%) experienced COVID-19-related discrimination. The prevalence of probable PTSD was 19.6% (63/321) among the patients who experienced COVID-19-related discrimination, and 4.6% (152/3305) among those who had not encountered such discrimination. The adjusted OR of COVID-19-related discrimination for probable PTSD was 4.68 (95% confidence interval [95% CI], 3.36-6.53). The population attributable fraction of probable PTSD attributable to COVID-19-related discrimination among COVID-19 patients was estimated to be 23.4% (95% CI, 21.5-25.3).ConclusionThe comprehensive epidemiological survey of COVID-19 patients in Japan showed that COVID-19-related discrimination was associated with a higher prevalence of probable PTSD. Mitigating discrimination could be helpful to attenuate PTSD in future pandemics.

6.
Emerg Infect Dis ; 29(5): 956-966, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37044126

RESUMO

We conducted a cross-sectional survey among SARS-CoV-2-positive persons and negative controls in Sapporo, Japan, to clarify symptoms of long COVID. We collected responses from 8,018 participants, 3,694 case-patients and 3,672 controls. We calculated symptom prevalence for case-patients at 2-3, 4-6, 7-9, 10-12, and 13-18 months after illness onset. We used logistic regression, adjusted for age and sex, to estimate the odds ratio (OR) for each symptom and control reference. We calculated symptom prevalence by stratifying for disease severity, age, and sex. At 4-18 months from illness onset, ORs for anosmia, ageusia, dyspnea, alopecia, and brain fog were consistently >1, whereas ORs for common cold-like, gastrointestinal, and dermatologic symptoms were <1. Time trend ORs increased for diminished ability to concentrate, brain fog, sleep disturbance, eye symptoms, and tinnitus. Clinicians should focus on systemic, respiratory, and neuropsychiatric symptoms among long COVID patients.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Estudos de Casos e Controles , Japão/epidemiologia , Estudos Transversais
7.
J Virol ; 96(17): e0108322, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35993739

RESUMO

Ebola virus (EBOV) VP30 regulates viral genome transcription and replication by switching its phosphorylation status. However, the importance of VP30 phosphorylation and dephosphorylation in other viral replication processes such as nucleocapsid and virion assembly is unclear. Interestingly, VP30 is predominantly dephosphorylated by cellular phosphatases in viral inclusions, while it is phosphorylated in the released virions. Thus, uncertainties regarding how VP30 phosphorylation in nucleocapsids is achieved and whether VP30 phosphorylation provides any advantages in later steps in viral replication have arisen. In the present study, to characterize the roles of VP30 phosphorylation in nucleocapsid formation, we used electron microscopic analyses and live cell imaging systems. We identified VP30 localized to the surface of protrusions surrounding nucleoprotein (NP)-forming helical structures in the nucleocapsid, suggesting the involvement in assembly and transport of nucleocapsids. Interestingly, VP30 phosphorylation facilitated its association with nucleocapsid-like structures (NCLSs). On the contrary, VP30 phosphorylation does not influence the transport characteristics and NCLS number leaving from and coming back into viral inclusions, indicating that the phosphorylation status of VP30 is not a prerequisite for NCLS departure. Moreover, the phosphorylation status of VP30 did not cause major differences in nucleocapsid transport in authentic EBOV-infected cells. In the following budding step, the association of VP30 and its phosphorylation status did not influence the budding efficiency of virus-like particles. Taken together, it is plausible that EBOV may utilize the phosphorylation of VP30 for its selective association with nucleocapsids, without affecting nucleocapsid transport and virion budding processes. IMPORTANCE Ebola virus (EBOV) causes severe fevers with unusually high case fatality rates. The nucleocapsid provides the template for viral genome transcription and replication. Thus, understanding the regulatory mechanism behind its formation is important for the development of novel therapeutic approaches. Previously, we established a live-cell imaging system based on the ectopic expression of viral fluorescent fusion proteins, allowing the visualization and characterization of intracytoplasmic transport of nucleocapsid-like structures. EBOV VP30 is an essential transcriptional factor for viral genome synthesis, and, although its role in viral genome transcription and replication is well understood, the functional importance of VP30 phosphorylation in assembly of nucleocapsids is still unclear. Our work determines the localization of VP30 at the surface of ruffled nucleocapsids, which differs from the localization of polymerase in EBOV-infected cells. This study sheds light on the novel role of VP30 phosphorylation in nucleocapsid assembly, which is an important prerequisite for virion formation.


Assuntos
Ebolavirus , Nucleocapsídeo , Fatores de Transcrição , Proteínas Virais , Montagem de Vírus , Transporte Biológico , Ebolavirus/química , Ebolavirus/crescimento & desenvolvimento , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Nucleocapsídeo/biossíntese , Nucleocapsídeo/metabolismo , Fosforilação , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírion/química , Vírion/crescimento & desenvolvimento , Vírion/metabolismo
8.
J Virol ; 96(7): e0004922, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35319224

RESUMO

Heartland bandavirus (HRTV), which is an emerging tick-borne virus first identified in Missouri in 2009, causes fever, fatigue, decreased appetite, headache, nausea, diarrhea, and muscle or joint pain in humans. HRTV is genetically close to Dabie bandavirus, which is the causative agent of severe fever with thrombocytopenia syndrome (SFTS) in humans and is known as SFTS virus (SFTSV). The generation of infectious HRTV entirely from cloned cDNAs has not yet been reported. The absence of a reverse genetics system for HRTV has delayed efforts to understand its pathogenesis and to generate vaccines and antiviral drugs. Here, we developed a reverse genetics system for HRTV, which employs an RNA polymerase I-mediated expression system. A recombinant nonstructural protein (NSs)-knockout HRTV (rHRTV-NSsKO) was generated. We found that NSs interrupted signaling associated with innate immunity in HRTV-infected cells. The rHRTV-NSsKO was highly attenuated, indicated by the apparent absence of symptoms in a mouse model of HRTV infection. Moreover, mice immunized with rHRTV-NSsKO survived a lethal dose of HRTV. These findings suggest that NSs is a virulence factor of HRTV and that rHRTV-NSsKO could be a vaccine candidate for HRTV. IMPORTANCE Heartland bandavirus (HRTV) is a tick-borne virus identified in the United States in 2009. HRTV causes fever, fatigue, decreased appetite, headache, nausea, diarrhea, and muscle or joint pain in humans. FDA-approved vaccines and antiviral drugs are unavailable. The lack of a reverse genetics system hampers efforts to develop such antiviral therapeutics. Here, we developed a reverse genetics system for HRTV that led to the generation of a recombinant nonstructural protein (NSs)-knockout HRTV (rHRTV-NSsKO). We found that NSs interrupted signaling associated with innate immunity in HRTV-infected cells. Furthermore, rHRTV-NSsKO was highly attenuated and immunogenic in a mouse model. These findings suggest that NSs is a virulence factor of HRTV and that rHRTV-NSsKO could be a vaccine candidate for HRTV.


Assuntos
Phlebovirus , Genética Reversa , Proteínas não Estruturais Virais , Animais , Antivirais/metabolismo , Artralgia , Bunyaviridae/genética , Bunyaviridae/imunologia , Bunyaviridae/patogenicidade , Diarreia , Fadiga , Cefaleia , Humanos , Imunidade Inata/imunologia , Camundongos , Náusea , Phlebovirus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Genética Reversa/métodos , Transdução de Sinais/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Virulência/genética , Fatores de Virulência/genética
9.
PLoS Pathog ; 17(2): e1008859, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33534867

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) caused by a species Dabie bandavirus (formerly SFTS virus [SFTSV]) is an emerging hemorrhagic infectious disease with a high case-fatality rate. One of the best strategies for preventing SFTS is to develop a vaccine, which is expected to induce both humoral and cellular immunity. We applied a highly attenuated but still immunogenic vaccinia virus strain LC16m8 (m8) as a recombinant vaccine for SFTS. Recombinant m8s expressing SFTSV nucleoprotein (m8-N), envelope glycoprotein precursor (m8-GPC), and both N and GPC (m8-N+GPC) in the infected cells were generated. Both m8-GPC- and m8-N+GPC-infected cells were confirmed to produce SFTSV-like-particles (VLP) in vitro, and the N was incorporated in the VLP produced by the infection of cells with m8-N+GPC. Specific antibodies to SFTSV were induced in mice inoculated with each of the recombinant m8s, and the mice were fully protected from lethal challenge with SFTSV at both 103 TCID50 and 105 TCID50. In mice that had been immunized with vaccinia virus strain Lister in advance of m8-based SFTSV vaccine inoculation, protective immunity against the SFTSV challenge was also conferred. The pathological analysis revealed that mice immunized with m8-GPC or m8-N+GPC did not show any histopathological changes without any viral antigen-positive cells, whereas the control mice showed focal necrosis with inflammatory infiltration with SFTSV antigen-positive cells in tissues after SFTSV challenge. The passive serum transfer experiments revealed that sera collected from mice inoculated with m8-GPC or m8-N+GPC but not with m8-N conferred protective immunity against lethal SFTSV challenge in naïve mice. On the other hand, the depletion of CD8-positive cells in vivo did not abrogate the protective immunity conferred by m8-based SFTSV vaccines. Based on these results, the recombinant m8-GPC and m8-N+GPC were considered promising vaccine candidates for SFTS.


Assuntos
Antígenos Virais/imunologia , Nucleoproteínas/imunologia , Phlebovirus/imunologia , Febre Grave com Síndrome de Trombocitopenia/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Proteínas do Envelope Viral/imunologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Febre Grave com Síndrome de Trombocitopenia/imunologia , Febre Grave com Síndrome de Trombocitopenia/virologia
10.
PLoS Pathog ; 17(7): e1009788, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310650

RESUMO

Zika virus (ZIKV) strains are classified into the African and Asian genotypes. The higher virulence of the African MR766 strain, which has been used extensively in ZIKV research, in adult IFNα/ß receptor knockout (IFNAR-/-) mice is widely viewed as an artifact associated with mouse adaptation due to at least 146 passages in wild-type suckling mouse brains. To gain insights into the molecular determinants of MR766's virulence, a series of genes from MR766 were swapped with those from the Asian genotype PRVABC59 isolate, which is less virulent in IFNAR-/- mice. MR766 causes 100% lethal infection in IFNAR-/- mice, but when the prM gene of MR766 was replaced with that of PRVABC59, the chimera MR/PR(prM) showed 0% lethal infection. The reduced virulence was associated with reduced neuroinvasiveness, with MR766 brain titers ≈3 logs higher than those of MR/PR(prM) after subcutaneous infection, but was not significantly different in brain titers of MR766 and MR/PR(prM) after intracranial inoculation. MR/PR(prM) also showed reduced transcytosis when compared with MR766 in vitro. The high neuroinvasiveness of MR766 in IFNAR-/- mice could be linked to the 10 amino acids that differ between the prM proteins of MR766 and PRVABC59, with 5 of these changes affecting positive charge and hydrophobicity on the exposed surface of the prM protein. These 10 amino acids are highly conserved amongst African ZIKV isolates, irrespective of suckling mouse passage, arguing that the high virulence of MR766 in adult IFNAR-/- mice is not the result of mouse adaptation.


Assuntos
Proteínas do Envelope Viral/genética , Virulência/genética , Infecção por Zika virus/virologia , Zika virus/genética , Zika virus/patogenicidade , Animais , Barreira Hematoencefálica , Permeabilidade Capilar , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Zika virus/metabolismo
11.
J Neurovirol ; 29(5): 519-523, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37668873

RESUMO

Intensive immunosuppression has enabled liver transplantation even in recipients with preformed donor-specific antibodies (DSA), an independent risk factor for graft rejection. However, these recipients may also be at high risk of progressive multifocal encephalopathy (PML) due to the comorbid immunosuppressed status. A 58-year-old woman presented with self-limited focal-to-bilateral tonic-clonic seizures 9 months after liver transplantation. She was desensitized using rituximab and plasma exchange before transplantation and was subsequently treated with steroids, tacrolimus, and everolimus after transplantation for her preformed DSA. Neurological examination revealed mild acalculia and agraphia. Cranial MRI showed asymmetric, cortex-sparing white matter lesions that increased over a week in the left frontal, left parietal, and right parieto-occipital lobes. Polymerase chain reaction (PCR) of the cerebrospinal fluid for the JC supported the diagnosis of PML. Immune reconstitution by reducing the immunosuppressant dose stopped lesion expansion, and PCR of the cerebrospinal fluid for the JC virus became negative. Graft rejection occurred 2 months after immune reconstitution, requiring readjustment of immunosuppressants. Forty-eight months after PML onset, the patient lived at home without disabling deficits. Intensive immunosuppression may predispose recipients to PML after liver transplantation with preformed DSA. Early immune reconstitution and careful monitoring of graft rejection may help improve outcomes.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Transplante de Fígado , Humanos , Feminino , Pessoa de Meia-Idade , Transplante de Fígado/efeitos adversos , Doadores Vivos , Vírus JC/genética , Imunossupressores/uso terapêutico
12.
J Infect Chemother ; 29(5): 469-474, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36702208

RESUMO

Dengue is a febrile illness caused by the dengue virus (DENV) that belongs to the genus Flavivirus in the family Flaviviridae. Cross-reactivity between flaviviruses poses a challenge while interpreting serological test results. In the present study, the cross-reactivity of sera of the patients with dengue, who traveled from Japan to DENV-endemic countries, was analyzed by using an enzyme-linked immunosorbent assay (ELISA) and neutralization test (NT). Sixteen serum samples were collected from patients with dengue and were tested for: i) IgM antibodies against Zika virus (ZIKV), West Nile virus (WNV), Japanese encephalitis virus (JEV), and tick-borne encephalitis virus (TBEV) using IgM ELISA, ii) IgG antibody against TBEV using IgG ELISA, and iii) neutralizing antibody against ZIKV, WNV, TBEV, and JEV. Among the 16 samples tested using ELISA, seven samples were IgM-positive for at least one of the other flaviviruses, and nine samples were IgG-positive for TBEV. Neutralizing antibody titers (NATs) against ZIKV, WNV, and TBEV were one-fourth or lower than those against the causative DENV in all samples. The NATs against JEV were one-fourth or lower than those against the causative DENV in six convalescent-phase serum sample among the seven convalescent-phase serum samples. The NAT against DENV of the residual one convalescent-phase serum was similar to that against JEV and that against JEV of its relevant acute-phase serum sample. These results showed that NTs with paired serum samples are important to correctly interpret the serological test results for DENV.


Assuntos
Vírus da Dengue , Dengue , Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Transmitidos por Carrapatos , Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Humanos , Testes de Neutralização/métodos , Anticorpos Antivirais , Testes Sorológicos , Anticorpos Neutralizantes , Ensaio de Imunoadsorção Enzimática , Reações Cruzadas , Imunoglobulina G , Dengue/diagnóstico , Imunoglobulina M
13.
J Infect Chemother ; 28(3): 373-376, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34802888

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a hemorrhagic fever. Patients mainly develop fever, thrombocytopenia, and leukopenia. A high case fatality rate of 16.2-47% has been reported. Vaccines and antivirals that are effective against SFTS virus (SFTSV) are not yet available in clinical practice. We previously showed that o-dihydroxybenzene is the important chemical core structure for anti-SFTSV activity. In this study, we evaluated the anti-SFTSV efficacy of 3-Hydroxy-L-tyrosine (L-DOPA), a treatment for Parkinson's disease and its enantiomer, 3-hydroxy-D-tyrosine (D-DOPA), both of which have an o-dihydroxybenzene backbone. SFTSV was preincubated with L- or D-DOPA and then inhibition of viral infection as well as viral attachment to host cells were evaluated by viral quantification. Both L- and D-DOPA inhibited SFTSV infection in a dose-dependent manner, mainly by blocking viral attachment to host cells. The half-maximal inhibitory concentration (IC50) of L-DOPA was 4.46-5.09 µM. IC50 of D-DOPA was 4.23-6.72 µM. IC50 of L-DOPA is very close to its maximum blood concentration after oral administration as a therapy for Parkinson's disease. D-DOPA, which IC50 was almost the same as that of L-DOPA, might not cause side effect. Thus, our present study demonstrated that L- and D-DOPA are potentially useful candidates for anti-SFTSV drugs.


Assuntos
Infecções por Bunyaviridae , Febres Hemorrágicas Virais , Doença de Parkinson , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Trombocitopenia , Humanos , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Trombocitopenia/tratamento farmacológico
14.
J Infect Chemother ; 28(1): 41-46, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34635449

RESUMO

INTRODUCTION: In response to global outbreaks of infectious diseases, the need for support from organizations such as the World Health Organization Global Outbreak Alert and Response Network (GOARN) is increasing. Identifying the obstacles and support needs for applicants could increase GOARN deployments from Japan. METHODS: This cross-sectional study involved a web-based, self-administered questionnaire survey targeting Japanese participants in the GOARN Tier 1.5 training workshop, held in Tokyo in December 2019. RESULTS: All 47 Japanese participants in the workshop responded to the survey. Most responders were male and in their 30s and 40s. Participants specialized in case management (42.6%), infection prevention and control (25.6%), epidemiology and surveillance (19.1%). Only two participants (4.6%) had experienced a GOARN deployment. Their motivations for joining the GOARN training workshop were "Desire to be part of an international emerging infectious disease response team" (44.6%), "Interest in making an international contribution" (19.1%), and "Interest in working for the Japanese government in the field of international infectious diseases" (14.9%). Obstacles to GOARN deployments were "Making time for deployments" (45.7%) and "Lack of required professional skills and knowledge" (40.4%). The support needs for GOARN deployments constituted "Periodic simulation training" (51.1%), "Financial support during deployments" (44.7%), and "Technical support for deployments" (40.4%). CONCLUSIONS: Our study revealed the obstacles and support needs of Japanese candidates for GOARN deployment. Making time and upskilling for GOARN deployment were the main obstacles. More practical training (like GOARN Tier 2.0) with other supports are needed. The national framework is desirable to realize these supports.


Assuntos
Doenças Transmissíveis Emergentes , Estudos Transversais , Surtos de Doenças , Saúde Global , Humanos , Japão/epidemiologia , Masculino , Recursos Humanos
15.
Uirusu ; 72(1): 19-30, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-37899226

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is an acute febrile illness with a high case fatality rate caused by the infection with Crimean-Congo hemorrhagic fever virus (CCHFV). The disease is endemic to a wide regions from the African continent to Asia through Europe. CCHFV is maintained in nature between Hyalomma species ticks and some species of animals. Humans are infected with CCHFV from CCHFV-positive tick bite or through a close contact with viremic animals in clucling hum am patients with CCHF. The CCHF-endemic regions depend on the distribution of the species of ticks such as Hyalomma species ticks, main vectors for CCHFV. There have been no confirmed cases of CCHF patients in Japan so far. CCHF is one of the zoonotic virus infections. Main clinical signs of the disease in humans are fever with nonspecific symptoms, and hemorrhage and deterioration in consciousness appear in severe cases. CCHF is classified in the disease category of viral hemorrhagic fevers, which include ebolavirus disease. Viral tick-borne diseases including tick-borne encephalitis, severe fever with thrombocytopenia syndrome, and Yezo virus infection, which has recently been discovered as a novel bunyavirus infection in Hokkaido, Japan, are becoming major concerns for public health in Japan. Trends of CCHF in terms of epidemiology should closely be monitored.

16.
Emerg Infect Dis ; 27(4): 1247-1249, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33755004

RESUMO

Severe fever with thrombocytopenia syndrome was diagnosed in a febrile woman in Japan after a tick bite. However, Rickettsia japonica DNA was retrospectively detected in the eschar specimen, suggesting co-infection from the bite. Establishment of the severe fever with thrombocytopenia syndrome virus infection might have overpowered the R. japonica infection.


Assuntos
Coinfecção , Infecções por Rickettsia , Rickettsia , Febre Grave com Síndrome de Trombocitopenia , Picadas de Carrapatos , Feminino , Humanos , Japão , Estudos Retrospectivos
17.
Mol Pain ; 17: 17448069211052171, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34904858

RESUMO

Acute pain that is associated with herpes zoster (HZ) can become long-lasting neuropathic pain, known as chronic post-herpetic neuralgia (PHN), especially in the elderly. HZ is caused by the reactivation of latent varicella-zoster virus (VZV), whereas PHN is not attributed to ongoing viral replication. Although VZV infection reportedly induces neuronal cell fusion in humans, the pathogenesis of PHN is not fully understood. A genome-wide association study (GWAS) revealed significant associations between PHN and the rs12596324 single-nucleotide polymorphism (SNP) of the heparan sulfate 3-O-sulfotransferase 4 (HS3ST4) gene in a previous study. To further examine whether this SNP is associated with both PHN and VZV reactivation, associations between rs12596324 and a history of HZ were statistically analyzed using GWAS data. HZ was significantly associated with the rs12596324 SNP of HS3ST4, indicating that HS3ST4 is related to viral replication. We investigated the influence of HS3ST4 expression on VZV infection in cultured cells. Fusogenic activity after VZV infection was enhanced in cells with HS3ST4 expression by microscopy. To quantitatively evaluate the fusogenic activity, we applied cytotoxicity assay and revealed that HS3ST4 expression enhanced cytotoxicity after VZV infection. Expression of the VZV glycoproteins gB, gH, and gL significantly increased cytotoxicity in cells with HS3ST4 expression by cytotoxicity assay, consistent with the fusogenic activity as visualized by fluorescence microscopy. HS3ST4 had little influence on viral genome replication, revealed by quantitative real-time polymerase chain reaction. These results suggest that HS3ST4 enhances cytotoxicity including fusogenic activity in the presence of VZV glycoproteins without enhancing viral genome replication.


Assuntos
Herpes Zoster , Neuralgia Pós-Herpética , Sulfotransferases/genética , Estudo de Associação Genômica Ampla , Herpes Zoster/genética , Herpesvirus Humano 3/genética , Humanos
18.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32669329

RESUMO

Herpesviruses exist in nature within each host animal. Ten herpesviruses have been isolated from bats and their biological properties reported. A novel bat alphaherpesvirus, which we propose to name "Pteropus lylei-associated alphaherpesvirus (PLAHV)," was isolated from urine of the fruit bat Pteropus lylei in Vietnam and characterized. The entire genome sequence was determined to be 144,008 bp in length and predicted to include 72 genes. PLAHV was assigned to genus Simplexvirus with other bat alphaherpesviruses isolated from pteropodid bats in Southeast Asia and Africa. The replication capacity of PLAHV in several cells was evaluated in comparison with that of herpes simplex virus 1 (HSV-1). PLAHV replicated better in the bat-originated cell line and less in human embryonic lung fibroblasts than HSV-1 did. PLAHV was serologically related to another bat alphaherpesvirus, Pteropodid alphaherpesvirus 1 (PtAHV1), isolated from a Pteropus hypomelanus-related bat captured in Indonesia, but not with HSV-1. PLAHV caused lethal infection in mice. PLAHV was as susceptible to acyclovir as HSV-1 was. Characterization of this new member of bat alphaherpesviruses, PLAHV, expands the knowledge on bat-associated alphaherpesvirology.IMPORTANCE A novel bat alphaherpesvirus, Pteropus lylei-associated alphaherpesvirus (PLAHV), was isolated from urine of the fruit bat Pteropus lylei in Vietnam. The whole-genome sequence was determined and was predicted to include 72 open reading frames in the 144,008-bp genome. PLAHV is circulating in a species of fruit bats, Pteropus lylei, in Asia. This study expands the knowledge on bat-associated alphaherpesvirology.


Assuntos
Alphaherpesvirinae/genética , Quirópteros/virologia , Genoma Viral , Infecções por Herpesviridae/veterinária , Proteínas Virais/genética , Aciclovir/farmacologia , Alphaherpesvirinae/classificação , Alphaherpesvirinae/efeitos dos fármacos , Alphaherpesvirinae/patogenicidade , Animais , Antivirais/farmacologia , Células COS , Linhagem Celular , Chlorocebus aethiops , Fibroblastos/virologia , Expressão Gênica , Tamanho do Genoma , Células HeLa , Infecções por Herpesviridae/tratamento farmacológico , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/mortalidade , Herpesvirus Humano 1/classificação , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 1/patogenicidade , Humanos , Camundongos , Filogenia , Análise de Sobrevida , Células Vero , Vietnã/epidemiologia , Proteínas Virais/metabolismo , Replicação Viral
19.
PLoS Pathog ; 15(4): e1007675, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31022290

RESUMO

Fusogenic reoviruses encode fusion-associated small transmembrane (FAST) protein, which induces cell-cell fusion. FAST protein is the only known fusogenic protein in non-enveloped viruses, and its role in virus replication is not yet known. We generated replication-competent, FAST protein-deficient pteropine orthoreovirus and demonstrated that FAST protein was not essential for viral replication, but enhanced viral replication in the early phase of infection. Addition of recombinant FAST protein enhanced replication of FAST-deficient virus and other non-fusogenic viruses in a fusion-dependent and FAST-species-independent manner. In a mouse model, replication and pathogenicity of FAST-deficient virus were severely impaired relative to wild-type virus, indicating that FAST protein is a major determinant of the high pathogenicity of fusogenic reovirus. FAST-deficient virus also conferred effective protection against challenge with lethal homologous virus strains in mice. Our results demonstrate a novel role of a viral fusogenic protein and the existence of a cell-cell fusion-dependent replication system in non-enveloped viruses.


Assuntos
Fusão Celular , Infecções por Reoviridae/virologia , Reoviridae/genética , Reoviridae/patogenicidade , Proteínas Virais de Fusão/metabolismo , Virulência , Replicação Viral , Animais , Masculino , Camundongos , Camundongos Endogâmicos C3H , Mutação , Infecções por Reoviridae/genética , Infecções por Reoviridae/metabolismo , Proteínas Virais de Fusão/genética
20.
Virol J ; 18(1): 16, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33435994

RESUMO

BACKGROUND: SARS-CoV-2 is a novel coronavirus that emerged in 2019 and is now classified in the genus Coronavirus with closely related SARS-CoV. SARS-CoV-2 is highly pathogenic in humans and is classified as a biosafety level (BSL)-3 pathogen, which makes manipulating it relatively difficult due to its infectious nature. METHODS: To circumvent the need for BSL-3 laboratories, an alternative assay was developed that avoids live virus and instead uses a recombinant VSV expressing luciferase and possesses the full length or truncated spike proteins of SARS-CoV-2. Furthermore, to measure SARS-CoV-2 neutralizing antibodies under BSL2 conditions, a chemiluminescence reduction neutralization test (CRNT) for SARS-CoV-2 was developed. The neutralization values of the serum samples collected from hospitalized patients with COVID-19 or SARS-CoV-2 PCR-negative donors against the pseudotyped virus infection evaluated by the CRNT were compared with antibody titers determined from an enzyme-linked immunosorbent assay (ELISA) or an immunofluorescence assay (IFA). RESULTS: The CRNT, which used whole blood collected from hospitalized patients with COVID-19, was also examined. As a result, the inhibition of pseudotyped virus infection was specifically observed in both serum and whole blood and was also correlated with the results of the IFA. CONCLUSIONS: In conclusion, the CRNT for COVID-19 is a convenient assay system that can be performed in a BSL-2 laboratory with high specificity and sensitivity for evaluating the occurrence of neutralizing antibodies against SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/sangue , Testes de Neutralização/métodos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vírus da Estomatite Vesicular Indiana/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Linhagem Celular , Convalescença , Humanos , Concentração Inibidora 50 , Luminescência , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA