Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
PLoS Pathog ; 18(9): e1010880, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36178974

RESUMO

The severity of Entamoeba histolytica infection is determined by host immunology, pathogen virulence, and the intestinal environment. Conventional research for assessing pathogen virulence has been mainly performed using laboratory strains, such as a virulent HM-1: IMSS (HM-1) and an avirulent Rahman, under various artificial environmental conditions because of the difficulties of axenic isolation of the clinical strains. However, it is still unclear whether scientific knowledge based on laboratory strains are universally applicable to the true pathogenesis. Hereby, we performed transcriptomic analysis of clinical strains from patients with different degrees of disease severity, as well as HM-1 under different conditions. Even after several months of axenization, Clinical strains show the distinct profile in gene expression during in vitro passage, moreover, difference between any 2 of these strains was much greater than the changes on the liver challenge. Interestingly, 26 DEGs, which were closely related to the biological functions, were oppositely up- or down regulated between virulent Ax 19 (liver abscess) and avirulent Ax 11 (asymptomatic carrier). Additionally, RNAseq using laboratory strain (HM1) showed more than half of genes were differently expressed between continuously in vitro passaged HM1 (in vitro HM1) and periodically liver passaged HM1 (virulent HM1), which was much greater than the changes on the liver passage of virulent HM1. Also, transcriptomic analysis of a laboratory strain revealed that continuous environmental stress enhances its virulence via a shift in its gene expression profile. Changes in gene expression patterns on liver abscess formation were not consistent between clinical and laboratory strains.


Assuntos
Amebíase , Disenteria Amebiana , Entamoeba histolytica , Abscesso Hepático , Expressão Gênica , Humanos , Índice de Gravidade de Doença
2.
Parasitology ; 151(4): 429-439, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571301

RESUMO

Entamoeba moshkovskii, according to recent studies, appears to exert a more significant impact on diarrhoeal infections than previously believed. The efficient identification and genetic characterization of E. moshkovskii isolates from endemic areas worldwide are crucial for understanding the impact of parasite genomes on amoebic infections. In this study, we employed a multilocus sequence typing system to characterize E. moshkovskii isolates, with the aim of assessing the role of genetic variation in the pathogenic potential of E. moshkovskii. We incorporated 3 potential genetic markers: KERP1, a protein rich in lysine and glutamic acid; amoebapore C (apc) and chitinase. Sequencing was attempted for all target loci in 68 positive E. moshkovskii samples, and successfully sequenced a total of 33 samples for all 3 loci. The analysis revealed 17 distinct genotypes, labelled M1­M17, across the tested samples when combining all loci. Notably, genotype M1 demonstrated a statistically significant association with diarrhoeal incidence within E. moshkovskii infection (P = 0.0394). This suggests that M1 may represent a pathogenic strain with the highest potential for causing diarrhoeal symptoms. Additionally, we have identified a few single-nucleotide polymorphisms in the studied loci that can be utilized as genetic markers for recognizing the most potentially pathogenic E. moshkovskii isolates. In our genetic diversity study, the apc locus demonstrated the highest Hd value and π value, indicating its pivotal role in reflecting the evolutionary history and adaptation of the E. moshkovskii population. Furthermore, analyses of linkage disequilibrium and recombination within the E. moshkovskii population suggested that the apc locus could play a crucial role in determining the virulence of E. moshkovskii.


Assuntos
Entamoeba , Tipagem de Sequências Multilocus , Marcadores Genéticos , Entamoeba/genética , Entamoeba/classificação , Entamoeba/isolamento & purificação , Humanos , Entamebíase/parasitologia , Entamebíase/epidemiologia , Genótipo , Polimorfismo de Nucleotídeo Único , Variação Genética , Filogenia
3.
Antimicrob Agents Chemother ; 67(11): e0056023, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37874291

RESUMO

Amebiasis is an important cause of morbidity and mortality worldwide, and caused by infection with the protozoan parasite Entamoeba histolytica. Metronidazole is currently the first-line drug despite adverse effects and concerns on the emergence of drug resistance. Fumagillin, a fungal metabolite from Aspergillus fumigatus, and its structurally related natural and synthetic compounds have been previously explored as potential anti-angiogenesis inhibitors for cancers, anti-microbial, and anti-obese compounds. Although fumagillin was used for human amebiasis in clinical trials in 1950s, the mode of action of fumagillin remains elusive until now. In this report, we showed that fumagillin covalently binds to methionine aminopeptidase 2 (MetAP2) and non-covalently but abundantly binds to patatin family phospholipase A (PLA). Susceptibility against fumagillin of the amebic strains in which expression of E. histolytica MetAP2 (EhMetAP2) gene was silenced increased compared to control strain. Conversely, overexpression of EhMetAP2 mutants that harbors amino acid substitutions responsible for resistance to ovalicin, a fumagillin analog, in human MetAP2, also resulted in decrease in fumagillin susceptibility. In contrast, neither gene silencing nor overexpression of E. histolytica PLA (EhPLA) affected fumagillin susceptibility. These data suggest that EhPLA is not essential and not the target of fumagillin for its amebicidal activity. Taken together, our data have demonstrated that EhMetAP2 is the primary target for amebicidal activity of fumagillin, and EhMetAP2 represents a rational explorable target for the development of alternative therapeutic agents against amebiasis.


Assuntos
Amebíase , Entamoeba histolytica , Parasitos , Animais , Humanos , Entamoeba histolytica/genética , Amebíase/tratamento farmacológico , Poliésteres
4.
Exp Parasitol ; 253: 108602, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37619808

RESUMO

The microaerotolarent amitochondriate protozoan Giardia lamblia causes Giardiasis and produces a unique enzyme called Phospholipase B (PLB) in contrast to higher eukaryotes. The enzyme is produced upon induction with oxidative (H2O2) stress, thus leading to prostaglandin E2 (PGE2) production. It exists in dimeric form, and its molecular weight is 56 kDa. This PLB was extracellularly cloned in the pET21d vector. The ORF is 1620 bp (Genbank accession no. -OM939681) long and codes for a protein 539 amino acid long, with a 15 amino acid long amino-terminal signal peptide. The highest enzyme activity of PLB was identified at pH 7.5 and 35 °C. This specific enzyme was also active at 50 °C pH 10, but activity was low. We also analyzed the expression of PLB protein in G. lamblia, which was significantly induced under increased oxidative stress.


Assuntos
Giardia lamblia , Giardíase , Humanos , Lisofosfolipase , Giardia lamblia/genética , Peróxido de Hidrogênio , Aminoácidos
5.
Parasitol Res ; 122(1): 139-144, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36308533

RESUMO

Epidemiological studies on amoebic infections are complicated by morphological overlap between the pathogenic E. histolytica, the commensal E. dispar and the amphizoic E. moshkovskii, necessitating molecular identification. The present study developed a simple and economical 18S PCR-RFLP method for the simultaneous detection and differentiation of the three species. PCR products were differentiated by Tat1 restriction digestion generating three different RFLP patterns. Validation was conducted by screening 382 faecal samples from human patients from Kolkata, India, hospitalized for diarrhoea. Analysis indicated that the PCR-RFLP could successfully differentiate between the three species and was confirmed by sequence analysis. This method could prove useful for clinical and epidemiological studies of amoebiasis.


Assuntos
Amebíase , Entamoeba histolytica , Entamoeba , Entamebíase , Humanos , Entamoeba/genética , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase/métodos , Fezes/química , DNA de Protozoário/genética , DNA de Protozoário/análise , Entamoeba histolytica/genética
6.
Parasitol Res ; 122(11): 2525-2537, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37642770

RESUMO

Amoebiasis is an infection caused by enteric protozoa, most commonly Entamoeba histolytica, and is globally considered a potentially severe and life-threatening condition. To understand the impact of the parasite genome on disease outcomes, it is important to study the genomes of infecting strains in areas with high disease prevalence. These studies aim to establish correlations between parasite genotypes and the clinical presentation of amoebiasis. We employ a strain typing approach that utilizes multiple loci, including SREHP and three polymorphic non-coding loci (tRNA-linked array N-K2 and loci 1-2 and 5-6), for high-resolution analysis. Distinct clinical phenotype isolates underwent amplification and sequencing of studied loci. The nucleotide sequences were analysed using Tandem Repeats Finder to detect short tandem repeats (STRs). These patterns were combined to assign a genotype, and the correlation between clinical phenotypes and repetitive patterns was statistically evaluated. This study found significant polymorphism in the size and number of PCR fragments at SREHP and 5-6 locus, while the 1-2 locus and NK2 locus showed variations in PCR product sizes. Out of 41 genotypes, two (I6 and I41) were significantly associated with their respective disease outcomes and were found in multiple isolates. We observed that I6 was linked with a symptomatic outcome, with a statistically significant p-value of 0.0183. Additionally, we found that I41 was associated with ALA disease outcome, with a p-value of 0.0089. Our study revealed new repeat units not previously reported, unveiling the genetic composition of E. histolytica strains in India, associated with distinct disease manifestations.


Assuntos
Entamoeba histolytica , Entamebíase , Humanos , Entamebíase/parasitologia , Polimorfismo Genético , Entamoeba histolytica/genética , Fenótipo , Repetições de Microssatélites
7.
Parasitol Res ; 122(11): 2567-2584, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37682345

RESUMO

The prevalence and genetic diversity of the protozoan pathogen Giardia duodenalis have been extensively studied worldwide. There is currently a lack of data regarding the genetic variability of the organism in eastern India. Understanding the circulating genotypes and associated risk factors is crucial for effective planning and implementing control measures. Therefore, the objective of the study was to conduct an epidemiological study to determine the prevalence and identify the various genotypes present. This survey adds to our knowledge on the occurrence and distribution of Giardia genotypes in the studied region. The overall prevalence was found to be 6.8%. This parasitic infection was significantly associated with two age groups, i.e., >0-5 years and >5-12 years. Using a multilocus genotyping method, we genotyped 52 human Giardia isolates that were obtained from diarrheal patients. Two distinct assemblages were found in the population-30.8% belonged to assemblage A; 63.5% belonged to assemblage B, prevalent in the population; and 5.7% belonged to a combined assemblage A+B. Sub-assemblage AII was found in 17.3% of the cases, followed by sub-assemblage AI (13.5%). High levels of genetic diversity were found within the population of assemblage B undergoing balancing selection. Overall, the high prevalence of the parasite observed, particularly among children, raises a major concern and necessitates implementation of robust control measures. Furthermore, we report the presence of numerous unique genotypes, circulating in this limited geographical boundary, which can be useful dataset for future studies.


Assuntos
Gastrópodes , Giardia lamblia , Giardíase , Criança , Animais , Humanos , Recém-Nascido , Lactente , Pré-Escolar , Giardia lamblia/genética , Genótipo , Giardíase/epidemiologia , Giardíase/parasitologia , Prevalência , Diarreia/epidemiologia , Índia/epidemiologia , Fezes/parasitologia , Tipagem de Sequências Multilocus , Filogenia
8.
Cell Microbiol ; 23(1): e13267, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32975360

RESUMO

Rab small GTPases regulate membrane traffic between distinct cellular compartments of all eukaryotes in a tempo-spatially specific fashion. Rab small GTPases are also involved in the regulation of cytoskeleton and signalling. Membrane traffic and cytoskeletal regulation play pivotal role in the pathogenesis of Entamoeba histolytica, which is a protozoan parasite responsible for human amebiasis. E. histolytica is unique in that its genome encodes over 100 Rab proteins, containing multiple isotypes of conserved members (e.g., Rab7) and Entamoeba-specific subgroups (e.g., RabA, B, and X). Among them, E. histolytica Rab7 is the most diversified group consisting of nine isotypes. While it was previously demonstrated that EhRab7A and EhRab7B are involved in lysosome and phagosome biogenesis, the individual roles of other Rab7 members and their coordination remain elusive. In this study, we characterised the third member of Rab7, Rab7D, to better understand the significance of the multiplicity of Rab7 isotypes in E. histolytica. Overexpression of EhRab7D caused reduction in phagocytosis of erythrocytes, trogocytosis (meaning nibbling or chewing of a portion) of live mammalian cells, and phagosome acidification and maturation. Conversely, transcriptional gene silencing of EhRab7D gene caused opposite phenotypes in phago/trogocytosis and phagosome maturation. Furthermore, EhRab7D gene silencing caused reduction in the attachment to and the motility on the collagen-coated surface. Image analysis showed that EhRab7D was occasionally associated with lysosomes and prephagosomal vacuoles, but not with mature phagosomes and trogosomes. Finally, in silico prediction of structural organisation of EhRab7 isotypes identified unique amino acid changes on the effector binding surface of EhRab7D. Taken together, our data suggest that EhRab7D plays coordinated counteracting roles: a inhibitory role in phago/trogocytosis and lyso/phago/trogosome biogenesis, and an stimulatory role in adherence and motility, presumably via interaction with unique effectors. Finally, we propose the model in which three EhRab7 isotypes are sequentially involved in phago/trogocytosis.


Assuntos
Entamoeba histolytica/genética , Entamoeba histolytica/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Fagocitose , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Citoesqueleto/metabolismo , Entamoeba histolytica/patogenicidade , Entamebíase/parasitologia , Inativação Gênica , Humanos , Lisossomos/metabolismo , Membranas/metabolismo , Fagossomos/metabolismo , Transcriptoma , Vacúolos/metabolismo , Virulência , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
9.
Korean J Parasitol ; 59(4): 409-413, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34470093

RESUMO

In this study, we have collected and screened a total of 268 stool samples from diarrheal patients admitted to an Infectious disease hospital in Kolkata for the presence of Cryptosporidium spp. The initial diagnosis was carried out by microscopy followed by genus specific polymerase chain reaction assays based on 70 kDa heat shock proteins (HSP70). DNA sequencing of the amplified locus has been employed for determination of genetic diversity of the local isolates. Out of 268 collected samples, 12 (4.48%) were positive for Cryptosporidium spp. Sequences analysis of 70 kDa heat shock proteins locus in 12 Cryptosporidium local isolates revealed that 2.24% and 1.86% of samples were showing 99% to 100% identity with C. parvum and C. hominis. Along with the other 2 major species one recently described globally distributed pathogenic species Cryptosporidium viatorum has been identified. The HSP70 locus sequence of the isolate showed 100% similarity with a previously described isolate of C. viatorum (Accession No. JX978274.1, JX978273.1, and JN846706.1) present in GenBank.


Assuntos
Criptosporidiose , Cryptosporidium , Criptosporidiose/diagnóstico , Cryptosporidium/genética , DNA de Protozoário/genética , Fezes , Genótipo , Humanos , Índia , Filogenia
10.
BMC Genomics ; 21(1): 813, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225881

RESUMO

BACKGROUND: Amoebozoa is a eukaryotic supergroup composed of unicellular and multicellular amoebic protozoa (e.g. Acanthamoeba, Dictyostelium, and Entamoeba). They are model organisms for studies in cellular and evolutionary biology and are of medical and veterinary importance. Despite their importance, Amoebozoan genome organization and genetic diversity remain poorly studied due to a lack of high-quality reference genomes. The slime mold Dictyostelium discoideum is the only Amoebozoan species whose genome is available at the chromosome-level. RESULTS: Here, we provide a near-chromosome-level assembly of the Entamoeba histolytica genome, the second semi-completed Amoebozoan genome. The availability of this improved genome allowed us to discover inter-strain heterogeneity in ploidy at the near-chromosome or sub-chromosome level among 11 clinical isolates and the reference strain. Furthermore, we observed ploidy-independent regulation of gene expression, contrary to what is observed in other organisms, where RNA levels are affected by ploidy. CONCLUSIONS: Our findings offer new insights into Entamoeba chromosome organization, ploidy, transcriptional regulation, and inter-strain variation, which will help to further decipher observed spectrums of virulence, disease symptoms, and drug sensitivity of E. histolytica isolates.


Assuntos
Entamoeba histolytica , Genoma de Protozoário , Cromossomos/genética , Entamoeba histolytica/genética , Genes de Protozoários , Ploidias , Proteínas de Protozoários/genética
11.
J Nat Prod ; 83(2): 481-488, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32040324

RESUMO

An antimalarial lipopeptide, ikoamide, was isolated from an Okeania sp. marine cyanobacterium. Its gross structure was established by spectroscopic analyses, and the absolute configuration was clarified based on a combination of chiral-phase HPLC analyses, spectroscopic analyses, and derivatization reactions. Ikoamide showed strong antimalarial activity with an IC50 value of 0.14 µM without cytotoxicity against human cancer cell lines at 10 µM.


Assuntos
Antimaláricos/farmacologia , Cianobactérias/química , Lipopeptídeos/química , Antimaláricos/química , Cromatografia Líquida de Alta Pressão , Humanos , Lipopeptídeos/isolamento & purificação , Estrutura Molecular , Relação Estrutura-Atividade
12.
J Nat Prod ; 82(10): 2907-2915, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31549837

RESUMO

The bioassay-guided fractionation of an Okeania sp. marine cyanobacterium collected in Okinawa led to the isolation of the lipopeptide mabuniamide (1). The gross structure of 1 was determined by spectroscopic analyses, and its absolute configuration was determined using Marfey's analysis of the acid hydrolysate of 1. The absolute configuration of 1 was confirmed by total synthesis. Mabuniamide (1) stimulated glucose uptake in cultured rat L6 myotubes. In addition, mabuniamide (1) and its stereoisomer (2) exhibited moderate antimalarial activity.


Assuntos
Cianobactérias/química , Lipopeptídeos/isolamento & purificação , Animais , Antimaláricos/farmacologia , Células Cultivadas , Lipopeptídeos/síntese química , Lipopeptídeos/farmacologia , Biologia Marinha , Conformação Molecular , Ratos
13.
J Nat Prod ; 81(11): 2545-2552, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30387355

RESUMO

Hoshinoamides A (1) and B (2), new acyclic lipopeptides, were isolated from the marine cyanobacterium Caldora penicillata. Their structures were elucidated by spectroscopic analyses and degradation reactions. Hoshinoamides A (1) and B (2) did not exhibit any cytotoxicity against HeLa cells at 10 µM, but inhibited the in vitro growth of the malarial parasite Plasmodium falciparum (IC50 = 0.52 and 1.0 µM, respectively).


Assuntos
Cianobactérias/química , Lipopeptídeos/isolamento & purificação , Lipopeptídeos/farmacologia , Água do Mar/microbiologia , Células HeLa , Humanos , Microbiologia da Água
14.
Int J Mol Sci ; 19(12)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513690

RESUMO

Membrane traffic plays a pivotal role in virulence in the enteric protozoan parasite Entamoeba histolytica. EhRab8A small GTPase is a key regulator of membrane traffic at the endoplasmic reticulum (ER) of this protist and is involved in the transport of plasma membrane proteins. Here we identified the binding proteins of EhRab8A. The Cdc50 homolog, a non-catalytic subunit of lipid flippase, was identified as an EhRab8A binding protein candidate by affinity coimmunoprecipitation. Binding of EhRab8A to EhCdc50 was also confirmed by reciprocal immunoprecipitation and blue-native polyacrylamide gel electrophoresis, the latter of which revealed an 87 kDa complex. Indirect immunofluorescence imaging with and without Triton X100 showed that endogenous EhCdc50 localized on the surface in the absence of permeabilizing agent but was observed on the intracellular structures and overlapped with the ER marker Bip when Triton X100 was used. Overexpression of N-terminal HA-tagged EhCdc50 impaired its translocation to the plasma membrane and caused its accumulation in the ER. As reported previously in other organisms, overexpression and accumulation of Cdc50 in the ER likely inhibited surface transport and function of the plasma membrane lipid flippase P4-ATPase. Interestingly, HA-EhCdc50-expressing trophozoites gained resistance to miltefosine, which is consistent with the prediction that HA-EhCdc50 overexpression caused its accumulation in the ER and mislocalization of the unidentified lipid flippase. Similarly, EhRab8A gene silenced trophozoites showed increased resistance to miltefosine, supporting EhRab8A-dependent transport of EhCdc50. This study demonstrated for the first time that EhRab8A mediates the transport of EhCdc50 and lipid flippase P4-ATPase from the ER to the plasma membrane.


Assuntos
Entamoeba histolytica/metabolismo , ATPases do Tipo-P/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Retículo Endoplasmático/metabolismo , Entamoeba histolytica/genética , ATPases do Tipo-P/genética , Proteínas de Protozoários/genética , Proteínas rab de Ligação ao GTP/genética
15.
Korean J Parasitol ; 56(1): 1-9, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29529844

RESUMO

Giardia lamblia, an anaerobic, amitochondriate protozoan parasite causes parasitic infection giardiasis in children and young adults. It produces pyruvate, a major metabolic product for its fermentative metabolism. The current study was undertaken to explore the effects of pyruvate as a physiological antioxidant during oxidative stress in Giardia by cysteine-ascorbate deprivation and further investigation upon the hypothesis that oxidative stress due to metabolism was the reason behind the cytotoxicity. We have estimated intracellular reactive oxygen species generation due to cysteine-ascorbate deprivation in Giardia. In the present study, we have examined the effects of extracellular addition of pyruvate, during oxidative stress generated from cysteine-ascorbate deprivation in culture media on DNA damage in Giardia. The intracellular pyruvate concentrations at several time points were measured in the trophozoites during stress. Trophozoites viability under cysteine-ascorbate deprived (CAD) medium in presence and absence of extracellular pyruvate has also been measured. The exogenous addition of a physiologically relevant concentration of pyruvate to trophozoites suspension was shown to attenuate the rate of ROS generation. We have demonstrated that Giardia protects itself from destructive consequences of ROS by maintaining the intracellular pyruvate concentration. Pyruvate recovers Giardia trophozoites from oxidative stress by decreasing the number of DNA breaks that might favor DNA repair.


Assuntos
Antioxidantes/metabolismo , Giardia lamblia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacologia , Trofozoítos/metabolismo , Deficiência de Ácido Ascórbico , Meios de Cultura , Cisteína/deficiência , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Giardia lamblia/genética , Espécies Reativas de Oxigênio/metabolismo
16.
Cell Microbiol ; 18(10): 1358-73, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26807810

RESUMO

Phagocytosis is indispensable for the pathogenesis of the intestinal protozoan parasite Entamoeba histolytica. Here, we showed that in E. histolytica Rab8A, which is generally involved in trafficking from the trans-Golgi network to the plasma membrane in other organisms but was previously identified in phagosomes of the amoeba in the proteomic analysis, primarily resides in the endoplasmic reticulum (ER) and participates in phagocytosis. We demonstrated that down-regulation of EhRab8A by small antisense RNA-mediated transcriptional gene silencing remarkably reduced adherence and phagocytosis of erythrocytes, bacteria and carboxylated latex beads. Surface biotinylation followed by SDS-PAGE analysis revealed that the surface expression of several proteins presumably involved in target recognition was reduced in the EhRab8A gene-silenced strain. Further, overexpression of wild-type EhRab8A augmented phagocytosis, whereas expression of the dominant-negative form of EhRab8A resulted in reduced phagocytosis. These results indicated that EhRab8A regulates transport of surface receptor(s) for the prey from the ER to the plasma membrane. To our knowledge, this is the first report that the ER-resident Rab GTPase is involved in phagocytosis through the regulation of trafficking of a surface receptor, supporting a premise of direct involvement of the ER in phagocytosis.


Assuntos
Retículo Endoplasmático/enzimologia , Entamoeba histolytica/enzimologia , Fagocitose , Proteínas rab de Ligação ao GTP/fisiologia , Entamoeba histolytica/citologia , Eritrócitos/fisiologia , Escherichia coli , Humanos , Fagossomos/enzimologia , Rede trans-Golgi/enzimologia
17.
J Biol Chem ; 290(39): 23960-70, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26269598

RESUMO

Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply.


Assuntos
Proteínas de Bactérias/genética , Entamoeba histolytica/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Propionibacterium/genética , Proteínas de Protozoários/genética , Proteínas de Bactérias/metabolismo , Entamoeba histolytica/enzimologia , Humanos , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Propionibacterium/enzimologia , Proteínas de Protozoários/metabolismo
18.
Cell Microbiol ; 17(12): 1779-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26096601

RESUMO

The pathogenic amoeba Entamoeba histolytica is one of the causative agents of health hazards in tropical countries. It causes amoebic dysentery, colitis and liver abscesses in human. Iron is one of the essential nutritional resources for survival and chronic infection caused by the amoeba. The parasite has developed multiple ways to import, sequester and utilize iron from various iron-binding proteins from its host. In spite of its central role in pathogenesis, the mechanism of iron uptake by the parasite is largely unknown. Here, we carried out a systematic study to understand the role of some of the amoebic homologues of mammalian endocytic Rab GTPases (Rab5 and Rab21, Rab7A and Rab7B) in intracellular transport of human holo-transferrin by the parasite. Flow cytometry and quantitative microscopic image analysis revealed that Rab5 and Rab7A are required for the biogenesis of amoebic giant endocytic vacuoles (GEVs) and regulate the early phase of intracellular trafficking of transferrin. Rab7B is involved in the late phase, leading to the degradation of transferrin in the amoebic lysosome-like compartments. Using time-lapse fluorescence imaging in fixed trophozoites, we determined the kinetics of the vesicular transport of transferrin through Rab5-, Rab7A- and Rab7B-positive compartments. The involvement of Rab7A in the early phase of endocytosis by the parasite marks a significant divergence from its host in terms of spatiotemporal regulation by the Rab GTPases.


Assuntos
Entamoeba histolytica/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Ferro/metabolismo , Biogênese de Organelas , Proteínas de Protozoários/metabolismo , Transferrina/metabolismo , Vacúolos/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Citometria de Fluxo , Humanos , Microscopia de Fluorescência , Transporte Proteico , Imagem com Lapso de Tempo , proteínas de unión al GTP Rab7
19.
Malar J ; 15: 323, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27316546

RESUMO

BACKGROUND: Rab5 GTPase regulates membrane trafficking between the plasma membrane and endosomes and harbours a conserved C-terminal isoprenyl modification that is necessary for membrane recruitment. Plasmodium falciparum encodes three Rab5 isotypes, and one of these, Rab5b (PfRab5b), lacks the C-terminal modification but possesses the N-terminal myristoylation motif. PfRab5b was reported to localize to the parasite periphery. However, the trafficking pathway regulated by PfRab5b is unknown. METHODS: A complementation analysis of Rab5 isotypes was performed in Plasmodium berghei. A constitutively active PfRab5b mutant was expressed under the regulation of a ligand-dependent destabilization domain (DD)-tag system in P. falciparum. The localization of PfRab5b was evaluated after removing the ligand followed by selective permeabilization of the membrane with different detergents. Furthermore, P. falciparum N-terminally myristoylated adenylate kinase 2 (PfAK2) was co-expressed with PfRab5b, and trafficking of PfAK2 to the parasitophorous vacuole membrane was examined by confocal microscopy. RESULTS: PfRab5b complemented the function of PbRab5b, however, the conventional C-terminally isoprenylated Rab5, PbRab5a or PbRab5c, did not. The constitutively active PfRab5b mutant localized to the cytosol of the parasite and the tubovesicular network (TVN), a region that extends from the parasitophorous vacuole membrane (PVM) in infected red blood cells (iRBCs). By removing the DD-ligand, parasite cytosolic PfRab5b signal disappeared and a punctate structure adjacent to the endoplasmic reticulum (ER) and parasite periphery accumulated. The peripheral PfRab5b was sensitive to extracellular proteolysis after treatment with streptolysin O, which selectively permeabilizes the red blood cell plasma membrane, indicating that PfRab5b localized on the iRBC cytoplasmic face of the TVN. Transport of PfAK2 to the PVM was abrogated by overexpression of PfRab5b, and PfAK2 accumulated in the punctate structure together with PfRab5b. CONCLUSION: N-myristoylated Plasmodium Rab5b plays a role that is distinct from that of conventional mammalian Rab5 isotypes. PfRab5b localizes to a compartment close to the ER, translocated to the lumen of the organelle, and co-localizes with PfAK2. PfRab5b and PfAK2 are then transported to the TVN, and PfRab5b localizes on the iRBC cytoplasmic face of TVN. These data demonstrate that PfRab5b is transported from the parasite cytosol to TVN together with N-myristoylated PfAK2 via an uncharacterized membrane-trafficking pathway.


Assuntos
Adenilato Quinase/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Plasmodium berghei/enzimologia , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Adenilato Quinase/genética , Humanos , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas rab5 de Ligação ao GTP/genética
20.
Mol Cell Proteomics ; 13(1): 132-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24136294

RESUMO

Surface molecules are of major importance for host-parasite interactions. During Entamoeba histolytica infections, these interactions are predicted to be of prime importance for tissue invasion, induction of colitis and liver abscess formation. To date, however, little is known about the molecules involved in these processes, with only about 20 proteins or protein families found exposed on the E. histolytica surface. We have therefore analyzed the complete surface proteome of E. histolytica. Using cell surface biotinylation and mass spectrometry, 693 putative surface-associated proteins were identified. In silico analysis predicted that ∼26% of these proteins are membrane-associated, as they contain transmembrane domains and/or signal sequences, as well as sites of palmitoylation, myristoylation, or prenylation. An additional 25% of the identified proteins likely represent nonclassical secreted proteins. Surprisingly, no membrane-association sites could be predicted for the remaining 49% of the identified proteins. To verify surface localization, 23 proteins were randomly selected and analyzed by immunofluorescence microscopy. Of these 23 proteins, 20 (87%) showed definite surface localization. These findings indicate that a far greater number of E. histolytica proteins than previously supposed are surface-associated, a phenomenon that may be based on the high membrane turnover of E. histolytica.


Assuntos
Entamoeba histolytica/genética , Espectrometria de Massas , Proteínas de Membrana/biossíntese , Colite/genética , Colite/parasitologia , Colite/patologia , Entamoeba histolytica/patogenicidade , Interações Hospedeiro-Parasita/genética , Humanos , Lipoilação/genética , Prenilação/genética , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA