Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Mol Biochem Parasitol ; 256: 111582, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37562558

RESUMO

Acanthamoeba are known to cause a vision threatening eye infection typically due to contact lens wear, and an infection of the central nervous system. The ability of these amoebae to switch phenotypes, from an active trophozoite to a resistant cyst form is not well understood; the cyst stage is often resistant to chemotherapy, which is of concern given the rise of contact lens use and the ineffective disinfectants available, versus the cyst stage. Herein, for the first time, a range of raloxifene sulfonate/sulfamate derivatives which target nucleotide pyrophosphatase/phosphodiesterase enzymes, were assessed using amoebicidal and excystation tests versus the trophozoite and cyst stage of Acanthamoeba. Moreover, the potential for cytopathogenicity inhibition in amoebae was assessed. Each of the derivatives showed considerable anti-amoebic activity as well as the ability to suppress phenotypic switching (except for compound 1a). Selected raloxifene derivatives reduced Acanthamoeba-mediated host cell damage using lactate dehydrogenase assay. These findings suggest that pyrophosphatase/phosphodiesterase enzymes may be valuable targets against Acanthamoeba infections.


Assuntos
Acanthamoeba castellanii , Animais , Cloridrato de Raloxifeno/farmacologia , Ácidos Sulfônicos/farmacologia , Trofozoítos , Alcanossulfonatos/farmacologia , Diester Fosfórico Hidrolases/farmacologia
2.
Antibiotics (Basel) ; 12(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36978428

RESUMO

Pathogenic Acanthamoeba produce keratitis and fatal granulomatous amoebic encephalitis. Treatment remains problematic and often ineffective, suggesting the need for the discovery of novel compounds. For the first time, here we evaluated the effects of the anticancer drugs Irosustat and STX140 alone, as well as their nanoformulations, against A. castellanii via amoebicidal, excystment, cytopathogenicity, and cytotoxicity assays. Nanoformulations of the compounds were successfully synthesized with high encapsulation efficiency of 94% and 82% for Irosustat and STX140, respectively. Nanoparticles formed were spherical in shape and had a unimodal narrow particle size distribution, mean of 145 and 244 nm with a polydispersity index of 0.3, and surface charge of -14 and -15 mV, respectively. Irosustat and STX140 exhibited a biphasic release profile with almost 100% drug released after 48 h. Notably, Irosustat significantly inhibited A. castellanii viability and amoebae-mediated cytopathogenicity and inhibited the phenotypic transformation of amoebae cysts into the trophozoite form, however their nanoformulations depicted limited effects against amoebae but exhibited minimal cytotoxicity when tested against human cells using lactate dehydrogenase release assays. Accordingly, both compounds have potential for further studies, with the hope of discovering novel anti-Acanthamoeba compounds, and potentially developing targeted therapy against infections of the central nervous system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA