Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240193

RESUMO

Our previous studies using rodent models have suggested an essential role for Pin1 in the pathogenesis of non-alcoholic steatohepatitis (NASH). In addition, interestingly, serum Pin1 elevation has been reported in NASH patients. However, no studies have as yet examined the Pin1 expression level in human NASH livers. To clarify this issue, we investigated the expression level and subcellular distribution of Pin1 in liver specimens obtained using needle-biopsy samples from patients with NASH and healthy liver donors. Immunostaining using anti-Pin1 antibody revealed the Pin1 expression level to be significantly higher, particularly in nuclei, in the livers of NASH patients than those of healthy donors. In the samples from patients with NASH, the amount of nuclear Pin1 was revealed to be negatively related to serum alanine aminotransferase (ALT), while tendencies to be associated with other serum parameters such as aspartate aminotransferase (AST) and platelet number were noted but did not reach statistical significance. Such unclear results and the lack of a significant relationship might well be attributable to our small number of NASH liver samples (n = 8). Moreover, in vitro, it was shown that addition of free fatty acids to medium induced lipid accumulation in human hepatoma HepG2 and Huh7 cells, accompanied with marked increases in nuclear Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1), in accordance with the aforementioned observations in human NASH livers. In contrast, suppression of Pin1 gene expression using siRNAs attenuated the free fatty acid-induced lipid accumulation in Huh7 cells. Taken together, these observations strongly suggest that increased expression of Pin1, particularly in hepatic nuclei, contributes to the pathogenesis of NASH with lipid accumulation.


Assuntos
Carcinoma Hepatocelular , Hipercolesterolemia , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase/genética , Ácidos Graxos não Esterificados , Linhagem Celular
2.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958994

RESUMO

Citrus hassaku extract reportedly activates AMPK. Because this extract contains an abundance of auraptene, we investigated whether pure auraptene activates AMPK and inhibits proliferation using prostate cancer cell lines. Indeed, auraptene inhibited the proliferation and migration of LNCaP cells and induced phosphorylation of AMPK or its downstream ACC in LNCaP, PC3, and HEK-293 cells, but not in DU145 cells not expressing LKB1. In addition, the mTOR-S6K pathway, located downstream from activated AMPK, was also markedly suppressed by auraptene treatment. Importantly, it was shown that auraptene reduced androgen receptor (AR) and prostate-specific antigen (PSA) expressions at both the protein and the mRNA level. This auraptene-induced downregulation of PSA was partially but significantly reversed by treatment with AMPK siRNA or the AMPK inhibitor compound C, suggesting AMPK activation to, at least partially, be causative. Finally, in DU145 cells lacking the LKB1 gene, exogenously induced LKB1 expression restored AMPK phosphorylation by auraptene, indicating the essential role of LKB1. In summary, auraptene is a potent AMPK activator that acts by elevating the AMP/ATP ratio, thereby potentially suppressing prostate cancer progression, via at least three molecular mechanisms, including suppression of the mTOR-S6K pathway, reduced lipid synthesis, and AR downregulation caused by AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias da Próstata , Masculino , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Próstata/metabolismo , Células HEK293 , Quinases Proteína-Quinases Ativadas por AMP , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
3.
Circ J ; 86(12): 1990-1997, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36047087

RESUMO

BACKGROUND: Balloon atrial septostomy (BAS) is an essential catheterization procedure for congenital heart lesions. Recently, a balloon catheter for static BAS was approved for the first time in Japan as an alternative to the conventional pull-through BAS. Despite the expected increase in the use of static BAS, reports on its safety are scarce worldwide.Methods and Results: Data on static and pull-through BAS registered in a national registry between 2016 and 2018 were collected. During the study period, 247 sessions of static BAS and 588 sessions of pull-through BAS were performed on a total of 674 patients. Patients who underwent static BAS were older (P<0.001). The incidence of serious adverse events (4.3% vs. 0.9%, P=0.03) and the overall incidence of adverse events (8.1% vs. 3.2%, P=0.03) were higher in static BAS than in pull-through BAS. Among patients who underwent static BAS, the risk factor for adverse events was a body weight <3 kg at the time of the procedure (odds ratio: 4.3 [confidence interval: 1.7-11], P=0.003). CONCLUSIONS: This nationwide study revealed differences in patient background between static and pull-through BAS, as well as a higher incidence of adverse events related to static BAS. Patients weighing <3 kg are at high risk for adverse events after static BAS and may require surgical and circulatory support backup.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Transposição dos Grandes Vasos , Humanos , Procedimentos Cirúrgicos Cardíacos/métodos , Cateterismo/efeitos adversos , Fatores de Risco , Razão de Chances , Sistema de Registros , Transposição dos Grandes Vasos/epidemiologia , Transposição dos Grandes Vasos/etiologia , Transposição dos Grandes Vasos/cirurgia
4.
FASEB J ; 34(1): 133-147, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914613

RESUMO

Neuromedin U (NMU), a highly conserved peptide in mammals, is involved in a wide variety of physiological processes. NMU, which is synthesized in ß-cells and co-localizes with insulin, directly acts on ß-cells via NMU receptor 1 (NMUR1) to suppress glucose-stimulated insulin secretion (GSIS). The mechanism underlying this insulinostatic effect has yet to be elucidated. We observed that NMU caused mitochondrial dysfunction by impairing mitochondrial biogenesis, respiration, and mitochondrial Ca2+ uptake in ß-cell-derived MIN6-K8 cells. NMU administration induced the endoplasmic reticulum (ER) stress, as reflected by the activation of ER stress signaling pathways involving ATF6, XBP-1s, and PERK-ATF4-CHOP. Nmu knockdown in MIN6-K8 cells increased the number of insulin granules and improved mitochondrial biogenesis and function. NMU was upregulated in both the islets of db/db mice and palmitate-treated MIN6-K8 cells. Our results highlight the crucial role of NMU in the maintenance of ß-cell function and glucose metabolism through regulation of mitochondria dysfunction and ER stress. In pathological stages that develop into diabetes, upregulation of NMU could suppress the insulin secretion by inducing mitochondrial dysfunction and ER stress, which may contribute to subsequent ß-cell dysfunction.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Mitocôndrias/efeitos dos fármacos , Neuropeptídeos/farmacologia , Animais , Apoptose , Cálcio , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Insulinoma , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Receptores de Neurotransmissores/genética , Receptores de Neurotransmissores/metabolismo
5.
Circ J ; 85(9): 1517-1524, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-33692248

RESUMO

BACKGROUND: Stent implantation for vascular stenosis associated with congenital heart diseases is commonly performed as an off-label procedure in Japan because there is no officially approved stent for any congenital heart disease.Methods and Results:We analyzed data from the Japanese Society of Congenital Interventional Cardiology Registry collected from January 2016 to December 2018. Patients who underwent stent implantation were enrolled in the present analysis. During the study period, there were 470 procedures, 443 sessions, and 391 cases. Of 443 sessions, 427 (96.4%) succeeded procedurally. There were no differences in the procedural success rates among age groups. In all, 416 sessions (367 patients; 94%) resulted in survival to 30 days after catheter intervention. Of 392 admissions, 357 patients (91%) survived to discharge. Only 4 deaths were directly related to stent implantation. Some in-hospital complications were observed during 55 of 443 sessions. Both hospital deaths and serious complications were significantly more frequent in the group with various preoperative risk factors. CONCLUSIONS: Although not officially approved for congenital heart diseases in Japan, stent implantation in congenital heart diseases has been widely and routinely performed for many years with safety and efficacy. The aim of stenting was variable and broad because of many different applications and morphological variations. These data may facilitate approval of such an important device in Japan.


Assuntos
Cardiologia , Cardiopatias Congênitas , Humanos , Japão , Sistema de Registros , Stents/efeitos adversos
6.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919842

RESUMO

Carnosic acid (CA), carnosol (CL) and rosmarinic acid (RA), components of the herb rosemary, reportedly exert favorable metabolic actions. This study showed that both CA and CL, but not RA, induce significant phosphorylation of AMP-dependent kinase (AMPK) and its downstream acetyl-CoA carboxylase 1 (ACC1) in HepG2 hepatoma cells. Glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase 1 (PCK1), rate-limiting enzymes of hepatic gluconeogenesis, are upregulated by forskolin stimulation, and this upregulation was suppressed when incubated with CA or CL. Similarly, a forskolin-induced increase in CRE transcriptional activity involved in G6PC and PCK1 regulations was also stymied when incubated with CA or CL. In addition, mRNA levels of ACC1, fatty acid synthase (FAS) and sterol regulatory element-binding protein 1c (SREBP-1c) were significantly reduced when incubated with CA or CL. Finally, it was shown that CA and CL suppressed cell proliferation and reduced cell viability, possibly as a result of AMPK activation. These findings raise the possibility that CA and CL exert a protective effect against diabetes and fatty liver disease, as well as subsequent cases of hepatoma.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Abietanos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/genética , Lipogênese/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ácidos Graxos/biossíntese , Gluconeogênese/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Lipogênese/efeitos dos fármacos , Camundongos , Oxirredução , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rosmarinus/química , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
7.
Biochem Biophys Res Commun ; 521(2): 521-526, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31677791

RESUMO

Neuromedin U (NMU) has a precursor that contains one additional peptide consisting of 33 or 36 amino acid residues. Recently, we identified this second peptide from rat brain and designated it neuromedin U precursor-related peptide (NURP), showing it to stimulate prolactin release from the pituitary when injected via the intracerebroventricular (icv) route. Here, we examined whether NMU, like NURP, also stimulates prolactin release. Unlike NURP, icv injection of NMU significantly decreased the secretion of prolactin from the pituitary. This suppression of prolactin release by NMU was observed in hyper-prolactin states such as lactation, stress, pseudopregnancy, domperidone (dopamine antagonist) administration, and icv injection of NURP. Immunohistochemical analysis revealed that icv injection of NMU induced cFos expression in dopaminergic neurons of the arcuate nucleus, but not the substantia nigra. Mice with double knockout of NMU and neuromedin S (NMS), the latter also binding to NMU receptors, showed a significant increase of the plasma prolactin level after domperidone treatment relative to wild-type mice. These results suggest that NMU and NURP may play important reciprocal roles in physiological prolactin secretion.


Assuntos
Núcleo Arqueado do Hipotálamo/citologia , Neurônios Dopaminérgicos/metabolismo , Neuropeptídeos/fisiologia , Prolactina/metabolismo , Animais , Camundongos , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Hipófise/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Receptores de Neurotransmissores
8.
Int J Mol Sci ; 20(19)2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31546603

RESUMO

Hyperuricemia has been recognized as a risk factor for insulin resistance as well as one of the factors leading to diabetic kidney disease (DKD). Since DKD is the most common cause of end-stage renal disease, we investigated whether febuxostat, a xanthine oxidase (XO) inhibitor, exerts a protective effect against the development of DKD. We used KK-Ay mice, an established obese diabetic rodent model. Eight-week-old KK-Ay mice were provided drinking water with or without febuxostat (15 µg/mL) for 12 weeks and then subjected to experimentation. Urine albumin secretion and degrees of glomerular injury judged by microscopic observations were markedly higher in KK-Ay than in control lean mice. These elevations were significantly normalized by febuxostat treatment. On the other hand, body weights and high serum glucose concentrations and glycated albumin levels of KK-Ay mice were not affected by febuxostat treatment, despite glucose tolerance and insulin tolerance tests having revealed febuxostat significantly improved insulin sensitivity and glucose tolerance. Interestingly, the IL-1ß, IL-6, MCP-1, and ICAM-1 mRNA levels, which were increased in KK-Ay mouse kidneys as compared with normal controls, were suppressed by febuxostat administration. These data indicate a protective effect of XO inhibitors against the development of DKD, and the underlying mechanism likely involves inflammation suppression which is independent of hyperglycemia amelioration.


Assuntos
Anti-Inflamatórios/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Febuxostat/uso terapêutico , Xantina Oxidase/antagonistas & inibidores , Animais , Peso Corporal/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Colágeno/metabolismo , Nefropatias Diabéticas/imunologia , Intolerância à Glucose/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Hiperuricemia/tratamento farmacológico , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Glomérulos Renais/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Ácido Úrico/sangue
9.
J Biol Chem ; 292(28): 11886-11895, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28566287

RESUMO

The prolyl isomerase Pin1 binds to the phosphorylated Ser/Thr-Pro motif of target proteins and enhances their cis-trans conversion. This report is the first to show that Pin1 expression in pancreatic ß cells is markedly elevated by high-fat diet feeding and in ob/ob mice. To elucidate the role of Pin1 in pancreatic ß cells, we generated ß-cell-specific Pin1 KO (ßPin1 KO) mice. These mutant mice showed exacerbation of glucose intolerance but had normal insulin sensitivity. We identified two independent factors underlying impaired insulin secretion in the ßPin1 KO mice. Pin1 enhanced pancreatic ß-cell proliferation, as indicated by a reduced ß-cell mass in ßPin1 KO mice compared with control mice. Moreover, a diet high in fat and sucrose failed to increase pancreatic ß-cell growth in the ßPin1 KO mice, an observation to which up-regulation of the cell cycle protein cyclin D appeared to contribute. The other role of Pin1 was to activate the insulin-secretory step: Pin1 KO ß cells showed impairments in glucose- and KCl-induced elevation of the intracellular Ca2+ concentration and insulin secretion. We also identified salt-inducible kinase 2 (SIK2) as a Pin1-binding protein that affected the regulation of Ca2+ influx and found Pin1 to enhance SIK2 kinase activity, resulting in a decrease in p35 protein, a negative regulator of Ca2+ influx. Taken together, our observations demonstrate critical roles of Pin1 in pancreatic ß cells and that Pin1 both promotes ß-cell proliferation and activates insulin secretion.


Assuntos
Indução Enzimática , Células Secretoras de Insulina/enzimologia , Insulina/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Sinalização do Cálcio , Linhagem Celular , Proliferação de Células , Dieta da Carga de Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Humanos , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Mutação , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Peptidilprolil Isomerase de Interação com NIMA/química , Peptidilprolil Isomerase de Interação com NIMA/genética , Obesidade/etiologia , Obesidade/patologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
Mediators Inflamm ; 2018: 3062319, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30046278

RESUMO

Sex hormone-binding globulin (SHBG) is a serum protein released mainly by the liver, and a low serum level correlates with a risk for metabolic syndrome including diabetes, obesity, and cardiovascular events. However, the underlying molecular mechanism(s) linking SHBG and metabolic syndrome remains unknown. In this study, using adipocytes and macrophages, we focused on the in vitro effects of SHBG on inflammation as well as lipid metabolism. Incubation with 20 nM SHBG markedly suppressed lipopolysaccharide- (LPS-) induced inflammatory cytokines, such as MCP-1, TNFα, and IL-6 in adipocytes and macrophages, along with phosphorylations of JNK and ERK. Anti-inflammatory effects were also observed in 3T3-L1 adipocytes cocultured with LPS-stimulated macrophages. In addition, SHBG treatment for 18 hrs or longer significantly induced the lipid degradation of differentiated 3T3-L1 cells, with alterations in its corresponding gene and protein levels. Notably, these effects of SHBG were not altered by coaddition of large amounts of testosterone or estradiol. In conclusion, SHBG suppresses inflammation and lipid accumulation in macrophages and adipocytes, which might be among the mechanisms underlying the protective effect of SHBG, that is, its actions which reduce the incidence of metabolic syndrome.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Síndrome Metabólica/metabolismo , Globulina de Ligação a Hormônio Sexual/farmacologia , Células 3T3-L1 , Animais , Estradiol/metabolismo , Humanos , Interleucina-6/metabolismo , Metabolismo dos Lipídeos , Lipólise , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Fosforilação , Fator de Necrose Tumoral alfa/metabolismo
11.
Int J Mol Sci ; 19(10)2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297626

RESUMO

The rising prevalence of non-alcoholic fatty liver disease (NAFLD) parallels the global increase in the number of people diagnosed with obesity and metabolic syndrome. The gut-liver axis (GLA) plays an important role in the pathogenesis of NAFLD/non-alcoholic steatohepatitis (NASH). In this review, we discuss the clinical significance and underlying mechanisms of action of gut-derived secretory factors in NAFLD/NASH, focusing on recent human studies. Several studies have identified potential causal associations between gut-derived secretory factors and NAFLD/NASH, as well as the underlying mechanisms. The effects of gut-derived hormone-associated drugs, such as glucagon-like peptide-1 analog and recombinant variant of fibroblast growth factor 19, and other new treatment strategies for NAFLD/NASH have also been reported. A growing body of evidence highlights the role of GLA in the pathogenesis of NAFLD/NASH. Larger and longitudinal studies as well as translational research are expected to provide additional insights into the role of gut-derived secretory factors in the pathogenesis of NAFLD/NASH, possibly providing novel markers and therapeutic targets in patients with NAFLD/NASH.


Assuntos
Células Enteroendócrinas/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Peptídeos Semelhantes ao Glucagon/genética , Peptídeos Semelhantes ao Glucagon/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neurotensina/genética , Neurotensina/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia
12.
Int J Mol Sci ; 19(12)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30544662

RESUMO

Recent clinical studies have demonstrated the protective effect of xanthine oxidase (XO) inhibitors against chronic kidney diseases, although the underlying molecular mechanisms remain unclear. However, to date, neither clinical nor basic research has been carried out to elucidate the efficacy of XO inhibitor administration for IgA nephropathy. We thus investigated whether febuxostat, an XO inhibitor, exerts a protective effect against the development of IgA nephropathy, using gddY mice as an IgA nephropathy rodent model. Eight-week-old gddY mice were provided drinking water with (15 µg/mL) or without febuxostat for nine weeks and then subjected to experimentation. Elevated serum creatinine and degrees of glomerular sclerosis and fibrosis, judged by microscopic observations, were significantly milder in the febuxostat-treated than in the untreated gddY mice, while body weights and serum IgA concentrations did not differ between the two groups. In addition, elevated mRNA levels of inflammatory cytokines such as TNFα, MCP-1, IL-1ß, and IL-6, collagen isoforms and chemokines in the gddY mouse kidneys were clearly normalized by the administration of febuxostat. These data suggest a protective effect of XO inhibitors against the development of IgA nephropathy, possibly via suppression of inflammation and its resultant fibrotic changes, without affecting the serum IgA concentration.


Assuntos
Anti-Inflamatórios/uso terapêutico , Progressão da Doença , Febuxostat/uso terapêutico , Glomerulonefrite por IGA/tratamento farmacológico , Xantina Oxidase/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Quimiocinas/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Febuxostat/farmacologia , Feminino , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Glomerulonefrite por IGA/enzimologia , Glomerulonefrite por IGA/patologia , Mediadores da Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos BALB C , Xantina Oxidase/metabolismo
13.
Biochem Biophys Res Commun ; 493(1): 677-683, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28864416

RESUMO

Neuromedin U (NMU), a highly conserved peptide in mammals, is implicated in energy homeostasis and glycemic control, and may also be involved in the regulation of adipoinsular axis function. However, the role of NMU in regulating insulin secretion has not been clearly established. In this study, we investigated the role of NMU in the regulation of insulin secretion both in vitro and in vivo. We found that NMU and NMU receptor (NMUR) 1 were expressed in mouse islets and ß cell-derived MIN6-K8 cells. In mice, NMU suppressed glucose-stimulated insulin secretion (GSIS) both in vitro and in vivo. Additionally, an NMUR1 agonist inhibited GSIS in both MIN6-K8 cells and mice islets. Moreover, NMU attenuated intracellular Ca2+ influx in MIN6-K8 cells, potentially causing a decrease in insulin secretion. siNmu-transfected MIN6-K8 cells showed elevated GSIS. Treatment with anti-NMU IgG increased GSIS in isolated mouse pancreatic islets. These results suggested that NMU can act directly on ß cells through NMUR1 in an autocrine or paracrine fashion to suppress insulin secretion. Collectively, our results highlight the crucial role of NMU in suppressing pancreatic insulin secretion, and may improve our understanding of glucose homeostasis.


Assuntos
Sinalização do Cálcio/fisiologia , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Neuropeptídeos/metabolismo , Receptores de Neurotransmissores/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
Biochem Biophys Res Commun ; 485(2): 409-413, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213131

RESUMO

Neuroendocrine regulatory peptide (NERP)-2 is derived from a distinct region of VGF, a neurosecretory protein originally identified as a product of a nerve growth factor-responsive gene in rat PC12 cells. Colocalization of NERP-2 with orexin-A in the lateral hypothalamus increases orexin-A-induced feeding and energy expenditure in both rats and mice. Orexigenic and anorectic peptides in the hypothalamus modulate gastric function. In this study, we investigated the effect of NERP-2 on gastric function in rats. Intracerebroventricular administration of NERP-2 to rats increased gastric acid secretion and gastric emptying, whereas peripheral administration did not affect gastric function. NERP-2-induced gastric acid secretion and gastric emptying were blocked by an orexin 1 receptor antagonist, SB334867. NERP-2 also induced Fos expression in the lateral hypothalamus and the dorsomotor nucleus of the vagus X, which are key sites in the central nervous system for regulation of gastric function. Atropine, a blocker of vagal efferent signal transduction, completely blocked NERP-2-induced gastric acid secretion. These results demonstrate that central administration of NERP-2 activates the orexin pathway, resulting in elevated gastric acid secretion and gastric emptying.


Assuntos
Ácido Gástrico/metabolismo , Esvaziamento Gástrico/efeitos dos fármacos , Proteínas do Tecido Nervoso/farmacologia , Receptores de Orexina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Atropina/farmacologia , Benzoxazóis/farmacologia , Injeções Intraventriculares , Masculino , Naftiridinas , Proteínas do Tecido Nervoso/administração & dosagem , Parassimpatolíticos/farmacologia , Ratos Sprague-Dawley , Ratos Transgênicos , Ratos Wistar , Ureia/análogos & derivados , Ureia/farmacologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia
15.
Endocr J ; 64(Suppl.): S53-S57, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28652546

RESUMO

Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes, and its progression significantly worsens the patient's quality of life. Although several drugs are available for DPN, all of these provide only symptomatic relief. We investigated the therapeutic effects of ghrelin for DPN, based on its various physiological functions. Seven patients with type 2 diabetes with typical clinical signs and symptoms of DPN were hospitalized. Synthetic human ghrelin (1.0 µg/kg) was administered intravenously for 14 days. Motor nerve conduction velocity (MCV) of the posterior tibial nerve improved significantly after the treatment, compared to that at baseline (35.1 ± 1.8 to 38.6 ± 1.8 m/s, p < 0.0001), while the MCV in six untreated patients did not change throughout hospitalization. The subjective symptoms assessed based on the total symptom score also significantly improved (15.6 ± 3.1 to 11.1 ± 2.2, p = 0.047). Although sensory nerve conduction velocity (SCV) of the sural nerve could not be detected in three patients at baseline, it was detected in two of the three patients after 14 days of ghrelin administration. Overall, SCV did not change significantly. Plasma glucose, but not serum C peptide, levels during a liquid meal tolerance test significantly improved after treatment. These results suggest that ghrelin may be a novel therapeutic option for DPN; however, a double-blind, placebo-controlled trial is needed in the future.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Neuropatias Diabéticas/tratamento farmacológico , Grelina/uso terapêutico , Adulto , Idoso , Peptídeo C/sangue , Diabetes Mellitus Tipo 2/sangue , Neuropatias Diabéticas/sangue , Neuropatias Diabéticas/fisiopatologia , Feminino , Grelina/administração & dosagem , Grelina/sangue , Hormônio do Crescimento Humano/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Nervo Sural/efeitos dos fármacos , Nervo Sural/fisiopatologia , Adulto Jovem
16.
Int J Mol Sci ; 18(2)2017 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-28165393

RESUMO

Linear ubiquitin chain assembly complex (LUBAC), composed of SHARPIN (SHANK-associated RH domain-interacting protein), HOIL-1L (longer isoform of heme-oxidized iron-regulatory protein 2 ubiquitin ligase-1), and HOIP (HOIL-1L interacting protein), forms linear ubiquitin on nuclear factor-κB (NF-κB) essential modulator (NEMO) and induces NF-κB pathway activation. SHARPIN expression and LUBAC formation were significantly reduced in the livers of mice 24 h after the injection of either carbon tetrachloride (CCl4) or acetaminophen (APAP), both of which produced the fulminant hepatitis phenotype. To elucidate its pathological significance, hepatic SHARPIN expression was suppressed in mice by injecting shRNA adenovirus via the tail vein. Seven days after this transduction, without additional inflammatory stimuli, substantial inflammation and fibrosis with enhanced hepatocyte apoptosis occurred in the livers. A similar but more severe phenotype was observed with suppression of HOIP, which is responsible for the E3 ligase activity of LUBAC. Furthermore, in good agreement with these in vivo results, transduction of Hepa1-6 hepatoma cells with SHARPIN, HOIL-1L, or HOIP shRNA adenovirus induced apoptosis of these cells in response to tumor necrosis factor-α (TNFα) stimulation. Thus, LUBAC is essential for the survival of hepatocytes, and it is likely that reduction of LUBAC is a factor promoting hepatocyte death in addition to the direct effect of drug toxicity.


Assuntos
Proteínas de Transporte/metabolismo , Cirrose Hepática/metabolismo , Complexos Multiproteicos/metabolismo , Acetaminofen/efeitos adversos , Animais , Apoptose/genética , Tetracloreto de Carbono/efeitos adversos , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Hepatócitos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/patologia , Masculino , Camundongos , Ligação Proteica , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
17.
Int J Mol Sci ; 18(8)2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28777298

RESUMO

Recent clinical studies have revealed the treatment of diabetic patients with sodium glucose co-transporter2 (SGLT2) inhibitors to reduce the incidence of cardiovascular events. Using nicotinamide and streptozotocin (NA/STZ) -treated ApoE KO mice, we investigated the effects of short-term (seven days) treatment with the SGLT2 inhibitor luseogliflozin on mRNA levels related to atherosclerosis in the aorta, as well as examining the long-term (six months) effects on atherosclerosis development. Eight-week-old ApoE KO mice were treated with NA/STZ to induce diabetes mellitus, and then divided into two groups, either untreated, or treated with luseogliflozin. Seven days after the initiation of luseogliflozin administration, atherosclerosis-related mRNA levels in the aorta were compared among four groups; i.e., wild type C57/BL6J, native ApoE KO, and NA/STZ-treated ApoE KO mice, with or without luseogliflozin. Short-term luseogliflozin treatment normalized the expression of inflammation-related genes such as F4/80, TNFα, IL-1ß, IL-6, ICAM-1, PECAM-1, MMP2 and MMP9 in the NA/STZ-treated ApoE KO mice, which showed marked elevations as compared with untreated ApoE KO mice. In contrast, lipid metabolism-related genes were generally unaffected by luseogliflozin treatment. Furthermore, after six-month treatment with luseogliflozin, in contrast to the severe and widely distributed atherosclerotic changes in the aortas of NA/STZ-treated ApoE KO mice, luseogliflozin treatment markedly attenuated the progression of atherosclerosis, without affecting serum lipid parameters such as high density lipoprotein, low density lipoprotein and triglyceride levels. Given that luseogliflozin normalized the aortic mRNA levels of inflammation-related, but not lipid-related, genes soon after the initiation of treatment, it is not unreasonable to speculate that the anti-atherosclerotic effect of this SGLT2 inhibitor emerges rapidly, possibly via the prevention of inflammation rather than of hyperlipidemia.


Assuntos
Aorta/metabolismo , Apolipoproteínas E/metabolismo , Aterosclerose/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Inflamação/genética , Metabolismo dos Lipídeos/genética , Inibidores do Transportador 2 de Sódio-Glicose , Sorbitol/análogos & derivados , Animais , Aterosclerose/complicações , Aterosclerose/genética , Moléculas de Adesão Celular/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Hiperlipidemias/complicações , Hiperlipidemias/tratamento farmacológico , Inflamação/complicações , Metabolismo dos Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Niacinamida , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Sorbitol/farmacologia , Sorbitol/uso terapêutico , Estreptozocina , Regulação para Cima/efeitos dos fármacos
18.
J Biol Chem ; 290(40): 24255-66, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26276391

RESUMO

AMP-activated protein kinase (AMPK) plays a critical role in metabolic regulation. In this study, first, it was revealed that Pin1 associates with any isoform of γ, but not with either the α or the ß subunit, of AMPK. The association between Pin1 and the AMPK γ1 subunit is mediated by the WW domain of Pin1 and the Thr(211)-Pro-containing motif located in the CBS domain of the γ1 subunit. Importantly, overexpression of Pin1 suppressed AMPK phosphorylation in response to either 2-deoxyglucose or biguanide stimulation, whereas Pin1 knockdown by siRNAs or treatment with Pin1 inhibitors enhanced it. The experiments using recombinant Pin1, AMPK, LKB1, and PP2C proteins revealed that the protective effect of AMP against PP2C-induced AMPKα subunit dephosphorylation was markedly suppressed by the addition of Pin1. In good agreement with the in vitro data, the level of AMPK phosphorylation as well as the expressions of mitochondria-related genes, such as PGC-1α, which are known to be positively regulated by AMPK, were markedly higher with reduced triglyceride accumulation in the muscles of Pin1 KO mice as compared with controls. These findings suggest that Pin1 plays an important role in the pathogenic mechanisms underlying impaired glucose and lipid metabolism, functioning as a negative regulator of AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Regulação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Inativação Gênica , Glucose/química , Células HEK293 , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Síndrome Metabólica/metabolismo , Metformina/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculos/patologia , Peptidilprolil Isomerase de Interação com NIMA , Fosforilação , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/metabolismo
19.
Mediators Inflamm ; 2016: 8603164, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28070145

RESUMO

Uric acid (UA) is the end product of purine metabolism and can reportedly act as an antioxidant. However, recently, numerous clinical and basic research approaches have revealed close associations of hyperuricemia with several disorders, particularly those comprising the metabolic syndrome. In this review, we first outline the two molecular mechanisms underlying inflammation occurrence in relation to UA metabolism; one is inflammasome activation by UA crystallization and the other involves superoxide free radicals generated by xanthine oxidase (XO). Importantly, recent studies have demonstrated the therapeutic or preventive effects of XO inhibitors against atherosclerosis and nonalcoholic steatohepatitis, which were not previously considered to be related, at least not directly, to hyperuricemia. Such beneficial effects of XO inhibitors have been reported for other organs including the kidneys and the heart. Thus, a major portion of this review focuses on the relationships between UA metabolism and the development of atherosclerosis, nonalcoholic steatohepatitis, and related disorders. Although further studies are necessary, XO inhibitors are a potentially novel strategy for reducing the risk of many forms of organ failure characteristic of the metabolic syndrome.


Assuntos
Aterosclerose/metabolismo , Síndrome Metabólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Úrico/metabolismo , Animais , Progressão da Doença , Radicais Livres/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Inflamassomos , Inflamação , Camundongos , Superóxidos/metabolismo , Xantina Oxidase/metabolismo
20.
Int J Mol Sci ; 17(9)2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27618008

RESUMO

Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14). Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer's disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.


Assuntos
Glucose/metabolismo , Metabolismo dos Lipídeos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Transdução de Sinais , Animais , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/metabolismo , Humanos , Doenças Metabólicas/enzimologia , Doenças Metabólicas/metabolismo , Camundongos , Modelos Biológicos , Peptidilprolil Isomerase de Interação com NIMA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA