Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Neurosci ; 44(21)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38531634

RESUMO

Methods of cognitive enhancement for humans are most impactful when they generalize across tasks. However, the extent to which such "transfer" is possible via interventions is widely debated. In addition, the contribution of excitatory and inhibitory processes to such transfer is unknown. Here, in a large-scale neuroimaging individual differences study with humans (both sexes), we paired multitasking training and noninvasive brain stimulation (transcranial direct current stimulation, tDCS) over multiple days and assessed performance across a range of paradigms. In addition, we varied tDCS dosage (1.0 and 2.0 mA), electrode montage (left or right prefrontal regions), and training task (multitasking vs a control task) and assessed GABA and glutamate concentrations via ultrahigh field 7T magnetic resonance spectroscopy. Generalized benefits were observed in spatial attention, indexed by visual search performance, when multitasking training was combined with 1.0 mA stimulation targeting either the left or right prefrontal cortex (PFC). This transfer effect persisted for ∼30 d post intervention. Critically, the transferred benefits associated with right prefrontal tDCS were predicted by pretraining concentrations of glutamate in the PFC. Thus, the effects of this combined stimulation and training protocol appear to be linked predominantly to excitatory brain processes.


Assuntos
Ácido Glutâmico , Aprendizagem , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Humanos , Masculino , Feminino , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Ácido Glutâmico/metabolismo , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/metabolismo , Adulto Jovem , Aprendizagem/fisiologia , Ácido gama-Aminobutírico/metabolismo , Atenção/fisiologia , Espectroscopia de Ressonância Magnética/métodos
2.
Magn Reson Med ; 91(4): 1314-1322, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38044723

RESUMO

PURPOSE: To demonstrate J-difference coediting of glutamate using Hadamard encoding and reconstruction of Mescher-Garwood-edited spectroscopy (HERMES). METHODS: Density-matrix simulations of HERMES (TE 80 ms) and 1D J-resolved (TE 31-229 ms) of glutamate (Glu), glutamine (Gln), γ-aminobutyric acid (GABA), and glutathione (GSH) were performed. HERMES comprised four sub-experiments with editing pulses applied as follows: (A) 1.9/4.56 ppm simultaneously (ONGABA /ONGSH ); (B) 1.9 ppm only (ONGABA /OFFGSH ); (C) 4.56 ppm only (OFFGABA /ONGSH ); and (D) 7.5 ppm (OFFGABA /OFFGSH ). Phantom HERMES and 1D J-resolved experiments of Glu were performed. Finally, in vivo HERMES (20-ms editing pulses) and 1D J-resolved (TE 31-229 ms) experiments were performed on 137 participants using 3 T MRI scanners. LCModel was used for quantification. RESULTS: HERMES simulation and phantom experiments show a Glu-edited signal at 2.34 ppm in the Hadamard sum combination A+B+C+D with no overlapping Gln signal. The J-resolved simulations and phantom experiments show substantial TE modulation of the Glu and Gln signals across the TEs, whose average yields a well-resolved Glu signal closely matching the Glu-edited signal from the HERMES sum spectrum. In vivo quantification of Glu show that the two methods are highly correlated (p < 0.001) with a bias of ∼10%, along with similar between-subject coefficients of variation (HERMES/TE-averaged: ∼7.3%/∼6.9%). Other Hadamard combinations produce the expected GABA-edited (A+B-C-D) or GSH-edited (A-B+C-D) signal. CONCLUSION: HERMES simulation and phantom experiments show the separation of Glu from Gln. In vivo HERMES experiments yield Glu (without Gln), GABA, and GSH in a single MRS scan.


Assuntos
Ácido Glutâmico , Imageamento por Ressonância Magnética , Humanos , Espectroscopia de Ressonância Magnética/métodos , Glutamina , Glutationa/química , Ácido gama-Aminobutírico/química
3.
J Magn Reson Imaging ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363087

RESUMO

BACKGROUND: MR spectroscopy (MRS) is a noninvasive tool for evaluating biochemical alterations, such as glutamate (Glu)/gamma-aminobutyric acid (GABA) imbalance and depletion of antioxidative glutathione (GSH) after traumatic brain injury (TBI). Thalamus, a critical and vulnerable region post-TBI, is challenging for MRS acquisitions, necessitating optimization to simultaneously measure GABA/Glu and GSH. PURPOSE: To assess the feasibility and optimize acquisition and processing approaches for simultaneously measuring GABA, Glx (Glu + glutamine (Gln)), and GSH in the thalamus, employing Hadamard encoding and reconstruction of MEscher-GArwood (MEGA)-edited spectroscopy (HERMES). STUDY TYPE: Prospective. SUBJECTS: 28 control subjects (age: 35.9 ± 15.1 years), and 17 mild TBI (mTBI) patients (age: 32.4 ± 11.3 years). FIELD STRENGTH/SEQUENCE: 3T/T1-weighted magnetization-prepared rapid gradient-echo (MP-RAGE), HERMES. ASSESSMENT: We evaluated the impact of acquisition with spatial saturation bands and post-processing with spectral alignment on HERMES performance in the thalamus among controls. Within-subject variability was examined in five controls through repeated scans within a week. The HERMES spectra in the posterior cingulate cortex (PCC) of controls were used as a reference for assessing HERMES performance in a reliable target. Furthermore, we compared metabolite levels and fitting quality in the thalamus between mTBI patients and controls. STATISTICAL TESTS: Unpaired t-tests and within-subject coefficient-of-variation (CV). A P-value <0.05 was deemed significant. RESULTS: HERMES spectra, acquired with saturation bands and processed with spectral alignment, yielded reliable metabolite measurements in the thalamus. The mean within-subject CV for GABA, Glx, and GSH levels were 18%, 10%, and 16% in the thalamus (7%, 9%, and 16% in the PCC). GABA (3.20 ± 0.60 vs 2.51 ± 0.55, P < 0.01) and Glx (8.69 ± 1.23 vs 7.72 ± 1.19, P = 0.03) levels in the thalamus were significantly higher in mTBI patients than in controls, with GSH (1.27 ± 0.35 vs 1.22 ± 0.28, P = 0.65) levels showing no significant difference. DATA CONCLUSION: Simultaneous measuring GABA/Glx and GSH using HERMES is feasible in the thalamus, providing valuable insight into TBI. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

4.
J Infect Dis ; 228(11): 1559-1570, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37540098

RESUMO

BACKGROUND: The aim of this study was to determine whether neurometabolite abnormalities indicating neuroinflammation and neuronal injury are detectable in individuals post-coronavirus disease 2019 (COVID-19) with persistent neuropsychiatric symptoms. METHODS: All participants were studied with proton magnetic resonance spectroscopy at 3 T to assess neurometabolite concentrations (point-resolved spectroscopy, relaxation time/echo time = 3000/30 ms) in frontal white matter (FWM) and anterior cingulate cortex-gray matter (ACC-GM). Participants also completed the National Institutes of Health Toolbox cognition and motor batteries and selected modules from the Patient-Reported Outcomes Measurement Information System. RESULTS: Fifty-four participants were evaluated: 29 post-COVID-19 (mean ± SD age, 42.4 ± 12.3 years; approximately 8 months from COVID-19 diagnosis; 19 women) and 25 controls (age, 44.1 ± 12.3 years; 14 women). When compared with controls, the post-COVID-19 group had lower total N-acetyl compounds (tNAA; ACC-GM: -5.0%, P = .015; FWM: -4.4%, P = .13), FWM glutamate + glutamine (-9.5%, P = .001), and ACC-GM myo-inositol (-6.2%, P = .024). Additionally, only hospitalized patients post-COVID-19 showed age-related increases in myo-inositol, choline compounds, and total creatine (interaction P = .029 to <.001). Across all participants, lower FWM tNAA and higher ACC-GM myo-inositol predicted poorer performance on several cognitive measures (P = .001-.009), while lower ACC-GM tNAA predicted lower endurance on the 2-minute walk (P = .005). CONCLUSIONS: In participants post-COVID-19 with persistent neuropsychiatric symptoms, the lower-than-normal tNAA and glutamate + glutamine indicate neuronal injury, while the lower-than-normal myo-inositol reflects glial dysfunction, possibly related to mitochondrial dysfunction and oxidative stress in Post-COVID participants with persistent neuropsychiatric symptoms.


Assuntos
COVID-19 , Glutamina , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Espectroscopia de Prótons por Ressonância Magnética/métodos , Glutamina/metabolismo , Prótons , Teste para COVID-19 , COVID-19/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Inositol/metabolismo , Glutamatos/metabolismo , Ácido Aspártico/metabolismo
5.
Magn Reson Med ; 87(1): 50-56, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411324

RESUMO

PURPOSE: To demonstrate J-difference editing of phosphorylethanolamine (PE) with chemical shifts at 3.22 (PE3.22 ) and 3.98 (PE3.98 ) ppm, and compare the merits of two editing strategies. METHODS: Density-matrix simulations of MEGA-PRESS (Mescher-Garwood PRESS) for PE were performed at TEs ranging from 80 to 200 ms in steps of 2 ms, applying 20-ms editing pulses (ON/OFF) at (1) 3.98/7.5 ppm to detect PE3.22 and (2) 3.22/7.5 ppm to detect PE3.98 . Phantom experiments were performed using a PE phantom to validate simulation results. Ten subjects were scanned using a Philips 3T MRI scanner at TEs of 90 ms and 110 ms to edit PE3.22 and PE3.98 . Osprey was used for data processing, modeling, and quantification. RESULTS: Simulations show substantial TE modulation of the intensity and shape of the edited signals due to coupling evolution. Simulated and phantom integrals suggest that TEs of 110 ms and 90 ms were optimal for the edited detection of PE3.22 and PE3.98 , respectively. Phantom results indicated strong agreement with the simulated spectra and integrals. In vivo quantification of the PE3.22 /total creatine and PE3.98 /total creatine concentration ratio yielded values of 0.26 ± 0.04 (between-subject coefficient of variation [CV]: 15.4%) and 0.18 ± 0.04 (CV: 22.8%), respectively, at TE = 90 ms, and 0.24 ± 0.02 (CV: 8.2%) and 0.23 ± 0.04 (CV: 18.0%), respectively, at TE = 110 ms. CONCLUSION: Simulations and in vivo MEGA-PRESS of PE demonstrate that both PE3.22 and PE3.98 are potential candidates for editing, but PE3.22 at TE = 110 ms yields lower variation across TEs.


Assuntos
Imageamento por Ressonância Magnética , Simulação por Computador , Etanolaminas , Humanos , Imagens de Fantasmas
6.
Magn Reson Med ; 87(2): 589-596, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34520079

RESUMO

PURPOSE: To investigate the editing-pulse flip angle (FA) dependence of editing efficiency and ultimately to maximize the edited signal of commonly edited MR spectroscopy (MRS) signals, such as gamma-aminobutyric acid (GABA) and lactate. METHODS: Density-matrix simulations were performed for a range of spin systems to find the editing-pulse FA for maximal editing efficiency. Simulations were confirmed by phantom experiments and in vivo measurements in 10 healthy participants using a 3T Philips scanner. Four MEGA-PRESS in vivo measurements targeting GABA+ and lactate were performed, comparing the conventional editing-pulse FA (FA = 180°) to the optimal one suggested by simulations (FA = 210°). RESULTS: Simulations and phantom experiments show that edited GABA and lactate signals are maximal at FA = 210°. Compared to conventional editing (FA = 180°), in vivo signals from GABA+ and lactate signals increase on average by 8.5% and 9.3%, respectively. CONCLUSION: Increasing the FA of editing-pulses in the MEGA-PRESS experiment from 180° to 210° increases the edited signals from GABA+ and lactate by about 9% in vivo.


Assuntos
Ácido Láctico , Ácido gama-Aminobutírico , Voluntários Saudáveis , Humanos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
7.
Magn Reson Med ; 88(5): 1994-2004, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35775808

RESUMO

PURPOSE: The purpose of this study is to present a cloud-based spectral simulation tool "MRSCloud," which allows MRS users to simulate a vendor-specific and sequence-specific basis set online in a convenient and time-efficient manner. This tool can simulate basis sets for GE, Philips, and Siemens MR scanners, including conventional acquisitions and spectral editing schemes with PRESS and semi-LASER localization at 3 T. METHODS: The MRSCloud tool was built on the spectral simulation functionality in the FID-A software package. We added three extensions to accelerate computation (ie, one-dimensional projection method, coherence pathways filters, and precalculation of propagators). The RF waveforms were generated based on vendors' generic pulse shapes and timings. Simulations were compared within MRSCloud using different numbers of spatial resolution (21 × 21, 41 × 41, and 101 × 101). Simulated metabolite basis functions from MRSCloud were compared with those generated by the generic FID-A and MARSS, and a phantom-acquired basis set from LCModel. Intraclass correlation coefficients were calculated to measure the agreement between individual metabolite basis functions. Statistical analysis was performed using R in RStudio. RESULTS: Simulation time for a full PRESS basis set is approximately 11 min on the server. The interclass correlation coefficients ICCs were at least 0.98 between MRSCloud and FID-A and were at least 0.96 between MRSCloud and MARSS. The interclass correlation coefficients between simulated MRSCloud basis spectra and acquired LCModel basis spectra were lowest for glutamine at 0.68 and highest for N-acetylaspartate at 0.96. CONCLUSIONS: Substantial reductions in runtime have been achieved. High ICC values indicated that the accelerating features are running correctly and produce comparable and accurate basis sets.


Assuntos
Computação em Nuvem , Glutamina , Simulação por Computador , Espectroscopia de Ressonância Magnética/métodos , Imagens de Fantasmas
8.
Magn Reson Med ; 87(4): 1711-1719, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34841564

RESUMO

PURPOSE: To acquire the mobile macromolecule (MM) spectrum from healthy participants, and to investigate changes in the signals with age and sex. METHODS: 102 volunteers (49 M/53 F) between 20 and 69 years were recruited for in vivo data acquisition in the centrum semiovale (CSO) and posterior cingulate cortex (PCC). Spectral data were acquired at 3T using PRESS localization with a voxel size of 30 × 26 × 26 mm3 , pre-inversion (TR/TI 2000/600 ms) and CHESS water suppression. Metabolite-nulled spectra were modeled to eliminate residual metabolite signals, which were then subtracted out to yield a "clean" MM spectrum using the Osprey software. Pearson's correlation coefficient was calculated between integrals and age for the 14 MM signals. One-way ANOVA was performed to determine differences between age groups. An independent t-test was carried out to determine differences between sexes. RESULTS: MM spectra were successfully acquired in 99 (CSO) and 96 (PCC) of 102 subjects. No significant correlations were seen between age and MM signals. One-way ANOVA also suggested no age-group differences for any MM peak (all p > .004). No differences were observed between sex groups. WM and GM voxel fractions showed a significant (p < .05) negative linear association with age in the WM-predominant CSO (R = -0.29) and GM-predominant PCC regions (R = -0.57) respectively while CSF increased significantly with age in both regions. CONCLUSION: Our findings suggest that a pre-defined MM basis function can be used for linear combination modeling of metabolite data from different age and sex groups.


Assuntos
Envelhecimento Saudável , Encéfalo/metabolismo , Voluntários Saudáveis , Humanos , Substâncias Macromoleculares/metabolismo , Espectroscopia de Ressonância Magnética , Software
9.
MAGMA ; 34(5): 689-696, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33745095

RESUMO

OBJECTIVE: The dopaminergic pathology of Parkinson's disease (PD) impacts circuits involving GABAergic neurons, especially in the brainstem, where the disease manifests early. The aim of this study is to test the hypothesis that levels of gamma-aminobutyric acid (GABA) in the upper brainstem are reduced in patients with PD compared to healthy controls, using edited magnetic resonance spectroscopy (MRS of GABA +). MATERIALS AND METHODS: GABA + levels were examined in 18 PD patients and 18 age- and sex-matched healthy controls (HCs). GABA + -edited MRS was performed in 7.5-ml voxels in the upper brainstem, and the spectra were processed using the Gannet software. Differences in GABA + levels between the two groups were analyzed using independent t test analysis. RESULTS: GABA + levels were significantly lower (p < 0.05) in the upper brainstem of the patients with PD (4.57 ± 0.94 mM) than the HCs (5.89 ± 1.16 mM). CONCLUSION: The lower GABA + levels in the upper brainstem of the PD patients suggest that a GABAergic deficit in the brainstem may contribute to the pathology in PD.


Assuntos
Doença de Parkinson , Tronco Encefálico/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Ácido gama-Aminobutírico
10.
Radiology ; 295(1): 171-180, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32043950

RESUMO

Background The hardware and software differences between MR vendors and individual sites influence the quantification of MR spectroscopy data. An analysis of a large data set may help to better understand sources of the total variance in quantified metabolite levels. Purpose To compare multisite quantitative brain MR spectroscopy data acquired in healthy participants at 26 sites by using the vendor-supplied single-voxel point-resolved spectroscopy (PRESS) sequence. Materials and Methods An MR spectroscopy protocol to acquire short-echo-time PRESS data from the midparietal region of the brain was disseminated to 26 research sites operating 3.0-T MR scanners from three different vendors. In this prospective study, healthy participants were scanned between July 2016 and December 2017. Data were analyzed by using software with simulated basis sets customized for each vendor implementation. The proportion of total variance attributed to vendor-, site-, and participant-related effects was estimated by using a linear mixed-effects model. P values were derived through parametric bootstrapping of the linear mixed-effects models (denoted Pboot). Results In total, 296 participants (mean age, 26 years ± 4.6; 155 women and 141 men) were scanned. Good-quality data were recorded from all sites, as evidenced by a consistent linewidth of N-acetylaspartate (range, 4.4-5.0 Hz), signal-to-noise ratio (range, 174-289), and low Cramér-Rao lower bounds (≤5%) for all of the major metabolites. Among the major metabolites, no vendor effects were found for levels of myo-inositol (Pboot > .90), N-acetylaspartate and N-acetylaspartylglutamate (Pboot = .13), or glutamate and glutamine (Pboot = .11). Among the smaller resonances, no vendor effects were found for ascorbate (Pboot = .08), aspartate (Pboot > .90), glutathione (Pboot > .90), or lactate (Pboot = .28). Conclusion Multisite multivendor single-voxel MR spectroscopy studies performed at 3.0 T can yield results that are coherent across vendors, provided that vendor differences in pulse sequence implementation are accounted for in data analysis. However, the site-related effects on variability were more profound and suggest the need for further standardization of spectroscopic protocols. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
Encéfalo/metabolismo , Comércio , Espectroscopia de Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino , Estudos Prospectivos , Adulto Jovem
11.
Magn Reson Med ; 84(5): 2312-2326, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32301174

RESUMO

In vivo proton magnetic resonance spectroscopy and spectroscopic imaging (MRS/MRSI) are valuable tools to study normal and abnormal human brain physiology. However, they are sensitive to motion, due to strong crusher gradients, long acquisition times, reliance on high magnetic field homogeneity, and particular acquisition methods such as spectral editing. The effects of motion include incorrect spatial localization, phase fluctuations, incoherent averaging, line broadening, and ultimately quantitation errors. Several retrospective methods have been proposed to correct motion-related artifacts. Recent advances in hardware also allow prospective (real-time) correction of the effects of motion, including adjusting voxel location, center frequency, and magnetic field homogeneity. This article reviews prospective and retrospective methods available in the literature and their implications for clinical MRS/MRSI. In combination, these methods can attenuate or eliminate most motion-related artifacts and facilitate the acquisition of high-quality data in the clinical research setting.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética , Movimento (Física) , Estudos Prospectivos , Estudos Retrospectivos
12.
NMR Biomed ; 33(4): e4227, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31943424

RESUMO

The aim of this work was to develop simultaneous edited MRS of γ-aminobutyric acid (GABA), glutathione (GSH), and ethanol (EtOH) using Hadamard encoding and reconstruction of MEGA-edited spectroscopy (HERMES) at 3T. Density-matrix simulations of HERMES were carried out and compared with phantom experiments. In vivo experiments were performed in six healthy volunteers about 30 min after alcohol consumption. Simulations of HERMES showed GABA-, GSH-, and EtOH-edited spectra with low levels of crosstalk and excellent agreement with phantom spectra. In vivo experiments showed well edited GABA signals at 3.0 ppm, GSH at 2.95 ppm, and EtOH at 1.18 ppm in the respective Hadamard combination spectra. Measured integral ratios were 0.082 ± 0.012 for GABA/Cr, 0.037 ± 0.006 for GSH/Cr, and 0.305 ± 0.129 for EtOH/Cr. Simulated, phantom, and in vivo measurements of HERMES show excellent separation of GABA-, GSH-, and EtOH-edited signals with negligible levels of crosstalk. HERMES allows a threefold acceleration of editing while maintaining spectral quality compared with sequentially acquired MEGA-PRESS measurements.


Assuntos
Etanol/metabolismo , Glutationa/metabolismo , Espectroscopia de Ressonância Magnética , Ácido gama-Aminobutírico/metabolismo , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Imagens de Fantasmas
13.
AIDS Res Ther ; 17(1): 20, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430069

RESUMO

BACKGROUND: Perinatal HIV infection negatively impacts cognitive functioning of children, main domains affected are working memory, processing speed and executive function. Early ART, even when interrupted, improves neurodevelopmental outcomes. Diffusion tension imaging (DTI) is a sensitive tool assessing white matter damage. We hypothesised that white matter measures in regions showing HIV-related alterations will be associated with lower neurodevelopmental scores in specific domains related to the functionality of the affected tracts. METHODS: DTI was performed on children in a neurodevelopmental sub study from the Children with HIV Early Antiretroviral (CHER) trial. Voxel-based group comparisons to determine regions where fractional anisotropy and mean diffusion differed between HIV+ and uninfected children were done. Locations of clusters showing group differences were identified using the Harvard-Oxford cortical and subcortical and John Hopkins University WM tractography atlases provided in FSL. This is a second review of DTI data in this cohort, which was reported in a previous study. Neurodevelopmental assessments including GMDS and Beery-Buktenica tests were performed and correlated with DTI parameters in abnormal white matter. RESULTS: 38 HIV+ children (14 male, mean age 64.7 months) and 11 controls (4 male, mean age 67.7 months) were imaged. Two clusters with lower fractional anisotropy and 7 clusters with increased mean diffusion were identified in the HIV+ group. The only neurodevelopmental domain with a trend of difference between the HIV+ children and controls (p = 0.08), was Personal Social Quotient which correlated to improved myelination of the forceps minor in the control group. As a combined group there was a negative correlation between visual perception and radial diffusion in the right superior longitudinal fasciculus and left inferior longitudinal fasciculus, which may be related to the fact that these tracts, forming part of the visual perception pathway, are at a crucial state of development at age 5. CONCLUSION: Even directed neurodevelopmental tests will underestimate the degree of microstructural white matter damage detected by DTI. The visual perception deficit detected in the entire study population should be further examined in a larger study.


Assuntos
Disfunção Cognitiva/etiologia , Imagem de Tensor de Difusão , Infecções por HIV/complicações , Testes Neuropsicológicos , Antirretrovirais/uso terapêutico , Encéfalo/diagnóstico por imagem , Pré-Escolar , Ensaios Clínicos como Assunto , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Padrões de Referência
14.
Neuroimage ; 185: 181-190, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30296560

RESUMO

PURPOSE: To demonstrate the framework of a novel Hadamard-encoded spectral editing approach for simultaneously detecting multiple low-concentration brain metabolites in vivo at 3T. METHODS: HERCULES (Hadamard Editing Resolves Chemicals Using Linear-combination Estimation of Spectra) is a four-step Hadamard-encoded editing scheme. 20-ms editing pulses are applied at: (A) 4.58 and 1.9 ppm; (B) 4.18 and 1.9 ppm; (C) 4.58 ppm; and (D) 4.18 ppm. Edited signals from γ-aminobutyric acid (GABA), glutathione (GSH), ascorbate (Asc), N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), aspartate (Asp), lactate (Lac), and likely 2-hydroxyglutarate (2-HG) are separated with reduced signal overlap into distinct Hadamard combinations: (A+B+C+D); (A+B-C-D); and (A-B+C-D). HERCULES uses a novel multiplexed linear-combination modeling approach, fitting all three Hadamard combinations at the same time, maximizing the amount of information used for model parameter estimation, in order to quantify the levels of these compounds. Fitting also allows estimation of the levels of total choline (tCho), myo-inositol (Ins), glutamate (Glu), and glutamine (Gln). Quantitative HERCULES results were compared between two grey- and white-matter-rich brain regions (11 min acquisition time each) in 10 healthy volunteers. Coefficients of variation (CV) of quantified measurements from the HERCULES fitting approach were compared against those from a single-spectrum fitting approach, and against estimates from short-TE PRESS data. RESULTS: HERCULES successfully segregates overlapping resonances into separate Hadamard combinations, allowing for the estimation of levels of seven coupled metabolites that would usually require a single 11-min editing experiment each. Metabolite levels and CVs agree well with published values. CVs of quantified measurements from the multiplexed HERCULES fitting approach outperform single-spectrum fitting and short-TE PRESS for most of the edited metabolites, performing only slightly to moderately worse than the fitting method that gives the lowest CVs for tCho, NAA, NAAG, and Asp. CONCLUSION: HERCULES is a new experimental approach with the potential for simultaneous editing and multiplexed fitting of up to seven coupled low-concentration and six high-concentration metabolites within a single 11-min acquisition at 3T.


Assuntos
Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Humanos
15.
Neuroimage ; 189: 425-431, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682536

RESUMO

Spectral editing allows direct measurement of low-concentration metabolites, such as GABA, glutathione (GSH) and lactate (Lac), relevant for understanding brain (patho)physiology. The most widely used spectral editing technique is MEGA-PRESS, which has been diversely implemented across research sites and vendors, resulting in variations in the final resolved edited signal. In this paper, we describe an effort to develop a new universal MEGA-PRESS sequence with HERMES functionality for the major MR vendor platforms with standardized RF pulse shapes, durations, amplitudes and timings. New RF pulses were generated for the universal sequence. Phantom experiments were conducted on Philips, Siemens, GE and Canon 3 T MRI scanners using 32-channel head coils. In vivo experiments were performed on the same six subjects on Philips and Siemens scanners, and on two additional subjects, one on GE and one on Canon scanners. On each platform, edited MRS experiments were conducted with the vendor-native and universal MEGA-PRESS sequences for GABA (TE = 68 ms) and Lac editing (TE = 140 ms). Additionally, HERMES for GABA and GSH was performed using the universal sequence at TE = 80 ms. The universal sequence improves inter-vendor similarity of GABA-edited and Lac-edited MEGA-PRESS spectra. The universal HERMES sequence yields both GABA- and GSH-edited spectra with negligible levels of crosstalk on all four platforms, and with strong agreement among vendors for both edited spectra. In vivo GABA+/Cr, Lac/Cr and GSH/Cr ratios showed relatively low variation between scanners using the universal sequence. In conclusion, phantom and in vivo experiments demonstrate successful implementation of the universal sequence across all four major vendors, allowing editing of several metabolites across a range of TEs.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Adulto , Feminino , Glutationa/metabolismo , Humanos , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética/instrumentação , Masculino , Ácido gama-Aminobutírico/metabolismo
16.
Neuroimage ; 191: 537-548, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30840905

RESUMO

Accurate and reliable quantification of brain metabolites measured in vivo using 1H magnetic resonance spectroscopy (MRS) is a topic of continued interest. Aside from differences in the basic approach to quantification, the quantification of metabolite data acquired at different sites and on different platforms poses an additional methodological challenge. In this study, spectrally edited γ-aminobutyric acid (GABA) MRS data were analyzed and GABA levels were quantified relative to an internal tissue water reference. Data from 284 volunteers scanned across 25 research sites were collected using GABA+ (GABA + co-edited macromolecules (MM)) and MM-suppressed GABA editing. The unsuppressed water signal from the volume of interest was acquired for concentration referencing. Whole-brain T1-weighted structural images were acquired and segmented to determine gray matter, white matter and cerebrospinal fluid voxel tissue fractions. Water-referenced GABA measurements were fully corrected for tissue-dependent signal relaxation and water visibility effects. The cohort-wide coefficient of variation was 17% for the GABA + data and 29% for the MM-suppressed GABA data. The mean within-site coefficient of variation was 10% for the GABA + data and 19% for the MM-suppressed GABA data. Vendor differences contributed 53% to the total variance in the GABA + data, while the remaining variance was attributed to site- (11%) and participant-level (36%) effects. For the MM-suppressed data, 54% of the variance was attributed to site differences, while the remaining 46% was attributed to participant differences. Results from an exploratory analysis suggested that the vendor differences were related to the unsuppressed water signal acquisition. Discounting the observed vendor-specific effects, water-referenced GABA measurements exhibit similar levels of variance to creatine-referenced GABA measurements. It is concluded that quantification using internal tissue water referencing is a viable and reliable method for the quantification of in vivo GABA levels.


Assuntos
Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética/normas , Ácido gama-Aminobutírico/análise , Adolescente , Adulto , Conjuntos de Dados como Assunto , Feminino , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Valores de Referência , Água , Adulto Jovem
17.
Magn Reson Med ; 82(1): 21-32, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30793803

RESUMO

PURPOSE: To evaluate the feasibility of simultaneous MR spectroscopic imaging (MRSI) of gamma-aminobutyric acid (GABA) and glutathione (GSH) in the human brain using Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy (HERMES). METHODS: Point RESolved Spectroscopy (PRESS)-localized MRSI was performed in GABA and GSH phantoms and in the human brain (n = 3) using HERMES editing and compared to conventional MEGA editing of each metabolite. Multiplet patterns, signal intensities, and metabolite crosstalk were compared between methods. GABA+ and GSH levels were compared between methods for bias and variability. Linear regression of HERMES-MRSI GABA+/H2 O and GSH/H2 O versus gray matter (GM) fraction were performed to assess differences between GM and white matter (WM). RESULTS: Phantom HERMES-MRSI scans gave comparable GABA+ and GSH signals to MEGA-MRSI across the PRESS-localized volume. In vivo, HERMES-reconstructed GABA+ and GSH values had minimal measurement bias and variability relative to MEGA-MRSI. Intersubject coefficients of variation (CV) from two regions within the PRESS-localized volume for HERMES and MEGA were 6-12% for GABA+ and 6-19% for GSH. Interregion CVs were 5-15% for GABA+ and 3-17% for GSH. The GABA+/H2 O and GSH/H2 O ratios were ~1.8 times higher and ~1.9 times higher, respectively, in GM than in WM. CONCLUSION: HERMES-MRSI of GABA+ and GSH was found to be practical in the human brain with minimal measurement bias and comparable variability to separate MEGA-edited acquisitions of each metabolite performed in double the scan time. The HERMES-MRSI is a promising method for simultaneously mapping the distribution of multiple low-concentration metabolites.


Assuntos
Glutationa , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Ácido gama-Aminobutírico , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Química Encefálica , Feminino , Glutationa/análise , Glutationa/química , Glutationa/metabolismo , Humanos , Masculino , Imagens de Fantasmas , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/metabolismo
18.
Magn Reson Med ; 80(2): 474-479, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29285783

RESUMO

PURPOSE: To demonstrate simultaneous editing of the two most commonly edited and overlapping signals, γ-aminobutyric acid (GABA), and glutathione (GSH), with Hadamard encoding and reconstruction of MEGA-edited spectroscopy (HERMES) using sLASER localization at 7T. METHODS: Density matrix simulations of HERMES at 7T were carried out and compared with phantom experiments. Additional phantom experiments were performed to characterize the echo time (TE) -dependent modulation of GABA- and GSH-edited HERMES spectra at TE of 80-160 ms. In vivo experiments were performed in 10 healthy volunteers, comparing HERMES (11 min) to sequentially acquired MEGA-sLASER detection of GABA and GSH (2 × 11 min). RESULTS: Simulations of HERMES show GABA- and GSH-edited spectra with negligible levels of crosstalk, and give modest agreement with phantom spectra. The TE series of GABA- and GSH-edited HERMES spectra modulate as a result of T2 relaxation and coupling evolution, with GABA showing a stronger TE-dependence. In vivo HERMES experiments show well-edited GABA and GSH signals. Measured concentrations are not statistically different between HERMES and MEGA-sLASER for GABA (1. 051 ± 0.254 i.u. and 1.053 ± 0.248 i.u; P > 0.985) or GSH (0.300 ± 0.091 i.u. and 0.302 ± 0.093 i.u; P > 0.940). CONCLUSION: Simulated, phantom and in vivo measurements of HERMES show excellent segregation of GABA- and GSH-edited signals, and excellent agreement with separately acquired MEGA-sLASER data. HERMES allows two-fold acceleration of editing while maintaining spectral quality compared with sequentially acquired MEGA-sLASER measurements. Magn Reson Med 80:474-479, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Glutationa/química , Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Ácido gama-Aminobutírico/química , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Imagens de Fantasmas
19.
Magn Reson Med ; 80(1): 21-28, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215137

RESUMO

PURPOSE: Detection of endogenous metabolites using multiplexed editing substantially improves the efficiency of edited magnetic resonance spectroscopy. Multiplexed editing (i.e., performing more than one edited experiment in a single acquisition) requires a tailored, robust approach for correction of frequency and phase offsets. Here, a novel method for frequency and phase correction (FPC) based on spectral registration is presented and compared against previously presented approaches. METHODS: One simulated dataset and 40 γ-aminobutyric acid-/glutathione-edited HERMES datasets acquired in vivo at three imaging centers were used to test four FPC approaches: no correction; spectral registration; spectral registration with post hoc choline-creatine alignment; and multistep FPC. The performance of each routine for the simulated dataset was assessed by comparing the estimated frequency/phase offsets against the known values, whereas the performance for the in vivo data was assessed quantitatively by calculation of an alignment quality metric based on choline subtraction artifacts. RESULTS: The multistep FPC approach returned corrections that were closest to the true values for the simulated dataset. Alignment quality scores were on average worst for no correction, and best for multistep FPC in both the γ-aminobutyric acid- and glutathione-edited spectra in the in vivo data. CONCLUSIONS: Multistep FPC results in improved correction of frequency/phase errors in multiplexed γ-aminobutyric acid-/glutathione-edited magnetic resonance spectroscopy experiments. The optimal FPC strategy is experiment-specific, and may even be dataset-specific. Magn Reson Med 80:21-28, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Glutationa/química , Espectroscopia de Ressonância Magnética , Ácido gama-Aminobutírico/química , Algoritmos , Artefatos , Simulação por Computador , Bases de Dados Factuais , Humanos , Processamento de Imagem Assistida por Computador , Funções Verossimilhança , Neuroimagem , Imagens de Fantasmas , Reprodutibilidade dos Testes , Razão Sinal-Ruído
20.
NMR Biomed ; 31(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29073732

RESUMO

The primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) and the major antioxidant glutathione (GSH) are compounds of high importance for the function and integrity of the human brain. In this study, a method for simultaneous J-difference spectral-edited magnetic resonance spectroscopy (MRS) of GSH and GABA with suppression of macromolecular (MM) signals at 3 T is proposed. MM-suppressed Hadamard encoding and reconstruction of MEGA (Mescher-Garwood)-edited spectroscopy (HERMES) consists of four sub-experiments (TE = 80 ms), with 20-ms editing pulses applied at: (A) 4.56 and 1.9 ppm; (B) 4.56 and 1.5 ppm; (C) 1.9 ppm; and (D) 1.5 ppm. One Hadamard combination (A + B - C - D) yields GSH-edited spectra, and another (A - B + C - D) yields GABA-edited spectra, with symmetric suppression of the co-edited MM signal. MM-suppressed HERMES, conventional HERMES and separate Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) data were successfully acquired from a (33 mm)3 voxel in the parietal lobe in 10 healthy subjects. GSH- and GABA-edited MM-suppressed HERMES spectra were in close agreement with the respective MEGA-PRESS spectra. Mean GABA (and GSH) estimates were 1.10 ± 0.15 i.u. (0.59 ± 0.12 i.u.) for MM-suppressed HERMES, and 1.13 ± 0.09 i.u. (0.66 ± 0.09 i.u.) for MEGA-PRESS. Mean GABA (and GSH) differences between MM-suppressed HERMES and MEGA-PRESS were -0.03 ± 0.11 i.u. (-0.07 ± 0.11 i.u.). The mean signal-to-noise ratio (SNR) improvement of MM-suppressed HERMES over MEGA-PRESS was 1.45 ± 0.25 for GABA and 1.32 ± 0.24 for GSH. These results indicate that symmetric suppression of the MM signal can be accommodated into the Hadamard editing framework. Compared with sequential single-metabolite MEGA-PRESS experiments, MM-suppressed HERMES allows for simultaneous edited measurements of GSH and GABA without MM contamination in only half the scan time, and SNR is maintained.


Assuntos
Glutationa/metabolismo , Substâncias Macromoleculares/metabolismo , Espectroscopia de Ressonância Magnética , Ácido gama-Aminobutírico/metabolismo , Adulto , Humanos , Masculino , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA