Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 616(7957): 543-552, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046093

RESUMO

Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy1. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study2,3. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic-transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary-metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis.


Assuntos
Evolução Molecular , Genoma Humano , Neoplasias Pulmonares , Metástase Neoplásica , Transcriptoma , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Genômica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Metástase Neoplásica/genética , Transcriptoma/genética , Alelos , Aprendizado de Máquina , Genoma Humano/genética
2.
Nature ; 616(7957): 534-542, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046095

RESUMO

Metastatic disease is responsible for the majority of cancer-related deaths1. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Evolução Clonal , Células Clonais , Evolução Molecular , Neoplasias Pulmonares , Metástase Neoplásica , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Células Clonais/patologia , Estudos de Coortes , Progressão da Doença , Neoplasias Pulmonares/patologia , Metástase Neoplásica/diagnóstico , Metástase Neoplásica/patologia , Recidiva Local de Neoplasia
3.
Nature ; 616(7957): 525-533, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046096

RESUMO

Lung cancer is the leading cause of cancer-associated mortality worldwide1. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/etiologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Recidiva Local de Neoplasia/genética , Filogenia , Resultado do Tratamento , Fumar/genética , Fumar/fisiopatologia , Mutagênese , Variações do Número de Cópias de DNA
4.
Nature ; 616(7957): 563-573, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046094

RESUMO

B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response.


Assuntos
Retrovirus Endógenos , Imunoterapia , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/virologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/virologia , Modelos Animais de Doenças , Retrovirus Endógenos/imunologia , Imunoterapia/métodos , Pulmão/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/virologia , Microambiente Tumoral , Linfócitos B/imunologia , Estudos de Coortes , Anticorpos/imunologia , Anticorpos/uso terapêutico
5.
Nature ; 597(7877): 555-560, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497419

RESUMO

The immune microenvironment influences tumour evolution and can be both prognostic and predict response to immunotherapy1,2. However, measurements of tumour infiltrating lymphocytes (TILs) are limited by a shortage of appropriate data. Whole-exome sequencing (WES) of DNA is frequently performed to calculate tumour mutational burden and identify actionable mutations. Here we develop T cell exome TREC tool (T cell ExTRECT), a method for estimation of T cell fraction from WES samples using a signal from T cell receptor excision circle (TREC) loss during V(D)J recombination of the T cell receptor-α gene (TCRA (also known as TRA)). TCRA T cell fraction correlates with orthogonal TIL estimates and is agnostic to sample type. Blood TCRA T cell fraction is higher in females than in males and correlates with both tumour immune infiltrate and presence of bacterial sequencing reads. Tumour TCRA T cell fraction is prognostic in lung adenocarcinoma. Using a meta-analysis of tumours treated with immunotherapy, we show that tumour TCRA T cell fraction predicts immunotherapy response, providing value beyond measuring tumour mutational burden. Applying T cell ExTRECT to a multi-sample pan-cancer cohort reveals a high diversity of the degree of immune infiltration within tumours. Subclonal loss of 12q24.31-32, encompassing SPPL3, is associated with reduced TCRA T cell fraction. T cell ExTRECT provides a cost-effective technique to characterize immune infiltrate alongside somatic changes.


Assuntos
Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/citologia , Linfócitos T/metabolismo , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/terapia , Ácido Aspártico Endopeptidases/genética , Estudos de Coortes , Exoma/genética , Feminino , Humanos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , Prognóstico , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Sequenciamento do Exoma/economia
6.
Nature ; 567(7749): 479-485, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30894752

RESUMO

The interplay between an evolving cancer and a dynamic immune microenvironment remains unclear. Here we analyse 258 regions from 88 early-stage, untreated non-small-cell lung cancers using RNA sequencing and histopathology-assessed tumour-infiltrating lymphocyte estimates. Immune infiltration varied both between and within tumours, with different mechanisms of neoantigen presentation dysfunction enriched in distinct immune microenvironments. Sparsely infiltrated tumours exhibited a waning of neoantigen editing during tumour evolution, indicative of historical immune editing, or copy-number loss of previously clonal neoantigens. Immune-infiltrated tumour regions exhibited ongoing immunoediting, with either loss of heterozygosity in human leukocyte antigens or depletion of expressed neoantigens. We identified promoter hypermethylation of genes that contain neoantigenic mutations as an epigenetic mechanism of immunoediting. Our results suggest that the immune microenvironment exerts a strong selection pressure in early-stage, untreated non-small-cell lung cancers that produces multiple routes to immune evasion, which are clinically relevant and forecast poor disease-free survival.


Assuntos
Antígenos de Neoplasias/imunologia , Evolução Molecular , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Evasão Tumoral/imunologia , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/genética , Linfócitos do Interstício Tumoral/imunologia , Masculino , Prognóstico , Microambiente Tumoral/imunologia
8.
BMC Med ; 22(1): 9, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191387

RESUMO

BACKGROUND: Due to the abundant usage of chemotherapy in young triple-negative breast cancer (TNBC) patients, the unbiased prognostic value of BRCA1-related biomarkers in this population remains unclear. In addition, whether BRCA1-related biomarkers modify the well-established prognostic value of stromal tumor-infiltrating lymphocytes (sTILs) is unknown. This study aimed to compare the outcomes of young, node-negative, chemotherapy-naïve TNBC patients according to BRCA1 status, taking sTILs into account. METHODS: We included 485 Dutch women diagnosed with node-negative TNBC under age 40 between 1989 and 2000. During this period, these women were considered low-risk and did not receive chemotherapy. BRCA1 status, including pathogenic germline BRCA1 mutation (gBRCA1m), somatic BRCA1 mutation (sBRCA1m), and tumor BRCA1 promoter methylation (BRCA1-PM), was assessed using DNA from formalin-fixed paraffin-embedded tissue. sTILs were assessed according to the international guideline. Patients' outcomes were compared using Cox regression and competing risk models. RESULTS: Among the 399 patients with BRCA1 status, 26.3% had a gBRCA1m, 5.3% had a sBRCA1m, 36.6% had tumor BRCA1-PM, and 31.8% had BRCA1-non-altered tumors. Compared to BRCA1-non-alteration, gBRCA1m was associated with worse overall survival (OS) from the fourth year after diagnosis (adjusted HR, 2.11; 95% CI, 1.18-3.75), and this association attenuated after adjustment for second primary tumors. Every 10% sTIL increment was associated with 16% higher OS (adjusted HR, 0.84; 95% CI, 0.78-0.90) in gBRCA1m, sBRCA1m, or BRCA1-non-altered patients and 31% higher OS in tumor BRCA1-PM patients. Among the 66 patients with tumor BRCA1-PM and ≥ 50% sTILs, we observed excellent 15-year OS (97.0%; 95% CI, 92.9-100%). Conversely, among the 61 patients with gBRCA1m and < 50% sTILs, we observed poor 15-year OS (50.8%; 95% CI, 39.7-65.0%). Furthermore, gBRCA1m was associated with higher (adjusted subdistribution HR, 4.04; 95% CI, 2.29-7.13) and tumor BRCA1-PM with lower (adjusted subdistribution HR, 0.42; 95% CI, 0.19-0.95) incidence of second primary tumors, compared to BRCA1-non-alteration. CONCLUSIONS: Although both gBRCA1m and tumor BRCA1-PM alter BRCA1 gene transcription, they are associated with different outcomes in young, node-negative, chemotherapy-naïve TNBC patients. By combining sTILs and BRCA1 status for risk classification, we were able to identify potential subgroups in this population to intensify and optimize adjuvant treatment.


Assuntos
Segunda Neoplasia Primária , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Adulto , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Adjuvantes Imunológicos , Etnicidade , Biomarcadores , Proteína BRCA1/genética
9.
Mod Pathol ; 37(4): 100439, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286221

RESUMO

This work puts forth and demonstrates the utility of a reporting framework for collecting and evaluating annotations of medical images used for training and testing artificial intelligence (AI) models in assisting detection and diagnosis. AI has unique reporting requirements, as shown by the AI extensions to the Consolidated Standards of Reporting Trials (CONSORT) and Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) checklists and the proposed AI extensions to the Standards for Reporting Diagnostic Accuracy (STARD) and Transparent Reporting of a Multivariable Prediction model for Individual Prognosis or Diagnosis (TRIPOD) checklists. AI for detection and/or diagnostic image analysis requires complete, reproducible, and transparent reporting of the annotations and metadata used in training and testing data sets. In an earlier work by other researchers, an annotation workflow and quality checklist for computational pathology annotations were proposed. In this manuscript, we operationalize this workflow into an evaluable quality checklist that applies to any reader-interpreted medical images, and we demonstrate its use for an annotation effort in digital pathology. We refer to this quality framework as the Collection and Evaluation of Annotations for Reproducible Reporting of Artificial Intelligence (CLEARR-AI).


Assuntos
Inteligência Artificial , Lista de Checagem , Humanos , Prognóstico , Processamento de Imagem Assistida por Computador , Projetos de Pesquisa
10.
Histopathology ; 84(6): 915-923, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433289

RESUMO

A growing body of research supports stromal tumour-infiltrating lymphocyte (TIL) density in breast cancer to be a robust prognostic and predicive biomarker. The gold standard for stromal TIL density quantitation in breast cancer is pathologist visual assessment using haematoxylin and eosin-stained slides. Artificial intelligence/machine-learning algorithms are in development to automate the stromal TIL scoring process, and must be validated against a reference standard such as pathologist visual assessment. Visual TIL assessment may suffer from significant interobserver variability. To improve interobserver agreement, regulatory science experts at the US Food and Drug Administration partnered with academic pathologists internationally to create a freely available online continuing medical education (CME) course to train pathologists in assessing breast cancer stromal TILs using an interactive format with expert commentary. Here we describe and provide a user guide to this CME course, whose content was designed to improve pathologist accuracy in scoring breast cancer TILs. We also suggest subsequent steps to translate knowledge into clinical practice with proficiency testing.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Patologistas , Linfócitos do Interstício Tumoral , Inteligência Artificial , Prognóstico
11.
Histopathology ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004603

RESUMO

AIMS: Over 50% of breast cancer cases are "Human epidermal growth factor receptor 2 (HER2) low breast cancer (BC)", characterized by HER2 immunohistochemistry (IHC) scores of 1+ or 2+ alongside no amplification on fluorescence in situ hybridization (FISH) testing. The development of new anti-HER2 antibody-drug conjugates (ADCs) for treating HER2-low breast cancers illustrates the importance of accurately assessing HER2 status, particularly HER2-low breast cancer. In this study we evaluated the performance of a deep-learning (DL) model for the assessment of HER2, including an assessment of the causes of discordances of HER2-Null between a pathologist and the DL model. We specifically focussed on aligning the DL model rules with the ASCO/CAP guidelines, including stained cells' staining intensity and completeness of membrane staining. METHODS AND RESULTS: We trained a DL model on a multicentric cohort of breast cancer cases with HER2-IHC scores (n = 299). The model was validated on two independent multicentric validation cohorts (n = 369 and n = 92), with all cases reviewed by three senior breast pathologists. All cases underwent a thorough review by three senior breast pathologists, with the ground truth determined by a majority consensus on the final HER2 score among the pathologists. In total, 760 breast cancer cases were utilized throughout the training and validation phases of the study. The model's concordance with the ground truth (ICC = 0.77 [0.68-0.83]; Fisher P = 1.32e-10) is higher than the average agreement among the three senior pathologists (ICC = 0.45 [0.17-0.65]; Fisher P = 2e-3). In the two validation cohorts, the DL model identifies 95% [93% - 98%] and 97% [91% - 100%] of HER2-low and HER2-positive tumours, respectively. Discordant results were characterized by morphological features such as extended fibrosis, a high number of tumour-infiltrating lymphocytes, and necrosis, whilst some artefacts such as nonspecific background cytoplasmic stain in the cytoplasm of tumour cells also cause discrepancy. CONCLUSION: Deep learning can support pathologists' interpretation of difficult HER2-low cases. Morphological variables and some specific artefacts can cause discrepant HER2-scores between the pathologist and the DL model.

12.
J Pathol ; 260(5): 551-563, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37580849

RESUMO

Computational pathology refers to applying deep learning techniques and algorithms to analyse and interpret histopathology images. Advances in artificial intelligence (AI) have led to an explosion in innovation in computational pathology, ranging from the prospect of automation of routine diagnostic tasks to the discovery of new prognostic and predictive biomarkers from tissue morphology. Despite the promising potential of computational pathology, its integration in clinical settings has been limited by a range of obstacles including operational, technical, regulatory, ethical, financial, and cultural challenges. Here, we focus on the pathologists' perspective of computational pathology: we map its current translational research landscape, evaluate its clinical utility, and address the more common challenges slowing clinical adoption and implementation. We conclude by describing contemporary approaches to drive forward these techniques. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Algoritmos , Prognóstico , Patologistas , Neoplasias/diagnóstico , Neoplasias/patologia
13.
J Pathol ; 261(4): 378-384, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37794720

RESUMO

Quantifying tumor-infiltrating lymphocytes (TILs) in breast cancer tumors is a challenging task for pathologists. With the advent of whole slide imaging that digitizes glass slides, it is possible to apply computational models to quantify TILs for pathologists. Development of computational models requires significant time, expertise, consensus, and investment. To reduce this burden, we are preparing a dataset for developers to validate their models and a proposal to the Medical Device Development Tool (MDDT) program in the Center for Devices and Radiological Health of the U.S. Food and Drug Administration (FDA). If the FDA qualifies the dataset for its submitted context of use, model developers can use it in a regulatory submission within the qualified context of use without additional documentation. Our dataset aims at reducing the regulatory burden placed on developers of models that estimate the density of TILs and will allow head-to-head comparison of multiple computational models on the same data. In this paper, we discuss the MDDT preparation and submission process, including the feedback we received from our initial interactions with the FDA and propose how a qualified MDDT validation dataset could be a mechanism for open, fair, and consistent measures of computational model performance. Our experiences will help the community understand what the FDA considers relevant and appropriate (from the perspective of the submitter), at the early stages of the MDDT submission process, for validating stromal TIL density estimation models and other potential computational models. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Linfócitos do Interstício Tumoral , Patologistas , Estados Unidos , Humanos , United States Food and Drug Administration , Linfócitos do Interstício Tumoral/patologia , Reino Unido
14.
J Pathol ; 260(4): 376-389, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37230111

RESUMO

The suggestion that the systemic immune response in lymph nodes (LNs) conveys prognostic value for triple-negative breast cancer (TNBC) patients has not previously been investigated in large cohorts. We used a deep learning (DL) framework to quantify morphological features in haematoxylin and eosin-stained LNs on digitised whole slide images. From 345 breast cancer patients, 5,228 axillary LNs, cancer-free and involved, were assessed. Generalisable multiscale DL frameworks were developed to capture and quantify germinal centres (GCs) and sinuses. Cox regression proportional hazard models tested the association between smuLymphNet-captured GC and sinus quantifications and distant metastasis-free survival (DMFS). smuLymphNet achieved a Dice coefficient of 0.86 and 0.74 for capturing GCs and sinuses, respectively, and was comparable to an interpathologist Dice coefficient of 0.66 (GC) and 0.60 (sinus). smuLymphNet-captured sinuses were increased in LNs harbouring GCs (p < 0.001). smuLymphNet-captured GCs retained clinical relevance in LN-positive TNBC patients whose cancer-free LNs had on average ≥2 GCs, had longer DMFS (hazard ratio [HR] = 0.28, p = 0.02) and extended GCs' prognostic value to LN-negative TNBC patients (HR = 0.14, p = 0.002). Enlarged smuLymphNet-captured sinuses in involved LNs were associated with superior DMFS in LN-positive TNBC patients in a cohort from Guy's Hospital (multivariate HR = 0.39, p = 0.039) and with distant recurrence-free survival in 95 LN-positive TNBC patients of the Dutch-N4plus trial (HR = 0.44, p = 0.024). Heuristic scoring of subcapsular sinuses in LNs of LN-positive Tianjin TNBC patients (n = 85) cross-validated the association of enlarged sinuses with shorter DMFS (involved LNs: HR = 0.33, p = 0.029 and cancer-free LNs: HR = 0.21 p = 0.01). Morphological LN features reflective of cancer-associated responses are robustly quantifiable by smuLymphNet. Our findings further strengthen the value of assessment of LN properties beyond the detection of metastatic deposits for prognostication of TNBC patients. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Aprendizado Profundo , Neoplasias de Mama Triplo Negativas , Humanos , Linfonodos/patologia , Metástase Linfática/patologia , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Feminino , Ensaios Clínicos como Assunto
15.
JAMA ; 331(13): 1135-1144, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563834

RESUMO

Importance: The association of tumor-infiltrating lymphocyte (TIL) abundance in breast cancer tissue with cancer recurrence and death in patients with early-stage triple-negative breast cancer (TNBC) who are not treated with adjuvant or neoadjuvant chemotherapy is unclear. Objective: To study the association of TIL abundance in breast cancer tissue with survival among patients with early-stage TNBC who were treated with locoregional therapy but no chemotherapy. Design, Setting, and Participants: Retrospective pooled analysis of individual patient-level data from 13 participating centers in North America (Rochester, Minnesota; Vancouver, British Columbia, Canada), Europe (Paris, Lyon, and Villejuif, France; Amsterdam and Rotterdam, the Netherlands; Milan, Padova, and Genova, Italy; Gothenburg, Sweden), and Asia (Tokyo, Japan; Seoul, Korea), including 1966 participants diagnosed with TNBC between 1979 and 2017 (with follow-up until September 27, 2021) who received treatment with surgery with or without radiotherapy but no adjuvant or neoadjuvant chemotherapy. Exposure: TIL abundance in breast tissue from resected primary tumors. Main Outcomes and Measures: The primary outcome was invasive disease-free survival [iDFS]. Secondary outcomes were recurrence-free survival [RFS], survival free of distant recurrence [distant RFS, DRFS], and overall survival. Associations were assessed using a multivariable Cox model stratified by participating center. Results: This study included 1966 patients with TNBC (median age, 56 years [IQR, 39-71]; 55% had stage I TNBC). The median TIL level was 15% (IQR, 5%-40%). Four-hundred seventeen (21%) had a TIL level of 50% or more (median age, 41 years [IQR, 36-63]), and 1300 (66%) had a TIL level of less than 30% (median age, 59 years [IQR, 41-72]). Five-year DRFS for stage I TNBC was 94% (95% CI, 91%-96%) for patients with a TIL level of 50% or more, compared with 78% (95% CI, 75%-80%) for those with a TIL level of less than 30%; 5-year overall survival was 95% (95% CI, 92%-97%) for patients with a TIL level of 50% or more, compared with 82% (95% CI, 79%-84%) for those with a TIL level of less than 30%. At a median follow-up of 18 years, and after adjusting for age, tumor size, nodal status, histological grade, and receipt of radiotherapy, each 10% higher TIL increment was associated independently with improved iDFS (hazard ratio [HR], 0.92 [0.89-0.94]), RFS (HR, 0.90 [0.87-0.92]), DRFS (HR, 0.87 [0.84-0.90]), and overall survival (0.88 [0.85-0.91]) (likelihood ratio test, P < 10e-6). Conclusions and Relevance: In patients with early-stage TNBC who did not undergo adjuvant or neoadjuvant chemotherapy, breast cancer tissue with a higher abundance of TIL levels was associated with significantly better survival. These results suggest that breast tissue TIL abundance is a prognostic factor for patients with early-stage TNBC.


Assuntos
Linfócitos do Interstício Tumoral , Neoplasias de Mama Triplo Negativas , Adulto , Humanos , Pessoa de Meia-Idade , Adjuvantes Imunológicos , Colúmbia Britânica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Estudos Retrospectivos , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia
16.
Breast Cancer Res ; 25(1): 117, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794508

RESUMO

BACKGROUND: Despite major improvements in treatment of HER2-positive metastatic breast cancer (MBC), only few patients achieve complete remission and remain progression free for a prolonged time. The tumor immune microenvironment plays an important role in the response to treatment in HER2-positive breast cancer and could contain valuable prognostic information. Detailed information on the cancer-immune cell interactions in HER2-positive MBC is however still lacking. By characterizing the tumor immune microenvironment in patients with HER2-positive MBC, we aimed to get a better understanding why overall survival (OS) differs so widely and which alternative treatment approaches may improve outcome. METHODS: We included all patients with HER2-positive MBC who were treated with trastuzumab-based palliative therapy in the Netherlands Cancer Institute between 2000 and 2014 and for whom pre-treatment tissue from the primary tumor or from metastases was available. Infiltrating immune cells and their spatial relationships to one another and to tumor cells were characterized by immunohistochemistry and multiplex immunofluorescence. We also evaluated immune signatures and other key pathways using next-generation RNA-sequencing data. With nine years median follow-up from initial diagnosis of MBC, we investigated the association between tumor and immune characteristics and outcome. RESULTS: A total of 124 patients with 147 samples were included and evaluated. The different technologies showed high correlations between each other. T-cells were less prevalent in metastases compared to primary tumors, whereas B-cells and regulatory T-cells (Tregs) were comparable between primary tumors and metastases. Stromal tumor-infiltrating lymphocytes in general were not associated with OS. The infiltration of B-cells and Tregs in the primary tumor was associated with unfavorable OS. Four signatures classifying the extracellular matrix of primary tumors showed differential survival in the population as a whole. CONCLUSIONS: In a real-world cohort of 124 patients with HER2-positive MBC, B-cells, and Tregs in primary tumors are associated with unfavorable survival. With this paper, we provide a comprehensive insight in the tumor immune microenvironment that could guide further research into development of novel immunomodulatory strategies.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Receptor ErbB-2/metabolismo , Linfócitos T Reguladores , Trastuzumab , Prognóstico , Protocolos de Quimioterapia Combinada Antineoplásica , Microambiente Tumoral
17.
Br J Cancer ; 128(4): 568-575, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36522476

RESUMO

BACKGROUND: Chemotherapy and radiotherapy were postulated to induce an inflamed tumour microenvironment. We aimed to evaluate the effects of adjuvant chemotherapy/radiotherapy on tumour-infiltrating lymphocytes (TILs) and programmed death-ligand 1 (PD-L1) expression in metastatic breast cancer. METHODS: We identified paired primary and metastatic tumours in 85 patients with breast cancer. Stromal TILs were assessed according to international guidelines. PD-L1 expression was evaluated using the VENTANA SP142 assay. RESULTS: TILs were significantly lower in metastatic tumours than in primary tumours (12.2 vs. 8.3%, p = 0.049). PD-L1 positivity was similar between primary and metastatic tumours (21.2 vs. 14.1%, p = 0.23). TILs were significantly lower in patients who received adjuvant chemotherapy than in those who did not (-9.07 vs. 1.19%, p = 0.01). However, radiotherapy had no significant effect on TILs (p = 0.44). Decreased TILs predicted worse post-recurrence survival (hazard ratio, 2.94; 95% confidence interval [CI]: 1.41-6.13, p = 0.003), while increased TILs was associated with a better prognosis (HR, 0.12; 95% CI: 0.02-0.08, p = 0.04). CONCLUSIONS: TILs decreased in metastatic tumours, particularly in patients who relapsed after adjuvant chemotherapy. Changes in TILs from primary to metastatic sites could be a prognostic factor after recurrence.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Antígeno B7-H1/metabolismo , Linfócitos do Interstício Tumoral/patologia , Prognóstico , Quimioterapia Adjuvante , Microambiente Tumoral
18.
Breast Cancer Res Treat ; 199(2): 401-413, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37010652

RESUMO

BACKGROUND: The immune landscape of breast cancer (BC) in patients from Sub Saharan Africa is understudied. Our aims were to describe the distribution of Tumour Infiltrating Lymphocytes (TILs) within the intratumoural stroma (sTILs) and the leading/invasive edge stroma (LE-TILs), and to evaluate TILs across BC subtypes with established risk factors and clinical characteristics in Kenyan women. METHODS: Visual quantification of sTILs and LE-TILs were performed on Haematoxylin and eosin -stained pathologically confirmed BC cases based on the International TIL working group guidelines. Tissue Microarrays were constructed and stained with immunohistochemistry (IHC) for CD3, CD4, CD8, CD68, CD20, and FOXP3. Linear and logistic regression models were used to assess associations between risk factors and tumour features with IHC markers and total TILs, after adjusting for other covariates. RESULTS: A total of 226 invasive BC cases were included. Overall, LE-TIL (mean = 27.9, SD = 24.5) proportions were significantly higher than sTIL (mean = 13.5, SD = 15.8). Both sTILs and LE- TILs were predominantly composed of CD3, CD8, and CD68. We found higher TILs to be associated with high KI67/high grade and aggressive tumour subtypes, although these associations varied by TIL locations. Older age at menarche (≥ 15 vs. < 15 years) was associated with higher CD3 (OR: 2.06, 95%CI:1.26-3.37), but only for the intra-tumour stroma. CONCLUSION: The TIL enrichment in more aggressive BCs is similar to previously published data in other populations. The distinct associations of sTIL/LE-TIL measures with most examined factors highlight the importance of spatial TIL evaluations in future studies.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Quênia/epidemiologia , Linfócitos do Interstício Tumoral , Prognóstico
19.
Clin Chem Lab Med ; 61(2): 224-233, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36409605

RESUMO

The background to this debate is now well-known: an EU policy decision to tighten controls on the devices and diagnostics sector led to the adoption of a regulation in 2017 with a schedule for implementation over coming years - a timetable extended still further by last-minute legislation in early 2022, to provide the sector and regulators with more time to adapt to the changes. Discussions among experts organised in April by the European Alliance for Personalized Medicine (EAPM) exposed continuing challenges that cannot be fully resolved by the recent deferral of implementation deadlines. One salient problem is that there is little awareness of the In Vitro Diagnostic Regulation (IVDR) across Europe, and only limited awareness of the different structures of national systems involved in implementing IVDR, with consequent risks for patient and consumer access to in vitro diagnostics (IVDs). The tentative conclusion from these consultations is that despite a will across the sector to seek workable solutions, the obstacles remain formidable, and the potential solutions so far proposed remain more a matter of aspirations than of clear pathways.


Assuntos
Medicina de Precisão , Humanos , Europa (Continente)
20.
Clin Chem Lab Med ; 61(4): 544-557, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36696602

RESUMO

BACKGROUND: Laboratory medicine has reached the era where promises of artificial intelligence and machine learning (AI/ML) seem palpable. Currently, the primary responsibility for risk-benefit assessment in clinical practice resides with the medical director. Unfortunately, there is no tool or concept that enables diagnostic quality assessment for the various potential AI/ML applications. Specifically, we noted that an operational definition of laboratory diagnostic quality - for the specific purpose of assessing AI/ML improvements - is currently missing. METHODS: A session at the 3rd Strategic Conference of the European Federation of Laboratory Medicine in 2022 on "AI in the Laboratory of the Future" prompted an expert roundtable discussion. Here we present a conceptual diagnostic quality framework for the specific purpose of assessing AI/ML implementations. RESULTS: The presented framework is termed diagnostic quality model (DQM) and distinguishes AI/ML improvements at the test, procedure, laboratory, or healthcare ecosystem level. The operational definition illustrates the nested relationship among these levels. The model can help to define relevant objectives for implementation and how levels come together to form coherent diagnostics. The affected levels are referred to as scope and we provide a rubric to quantify AI/ML improvements while complying with existing, mandated regulatory standards. We present 4 relevant clinical scenarios including multi-modal diagnostics and compare the model to existing quality management systems. CONCLUSIONS: A diagnostic quality model is essential to navigate the complexities of clinical AI/ML implementations. The presented diagnostic quality framework can help to specify and communicate the key implications of AI/ML solutions in laboratory diagnostics.


Assuntos
Inteligência Artificial , Ecossistema , Humanos , Aprendizado de Máquina , Atenção à Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA