Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Glob Chang Biol ; 26(5): 2756-2784, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32133744

RESUMO

In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.


Assuntos
Lagos , Fitoplâncton , Mudança Climática , Ecossistema , Rios
2.
Microb Ecol ; 76(1): 125-143, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29192335

RESUMO

High-throughput sequencing (HTS) was used to analyze the seasonal variations in the bacterioplankton community composition (BCC) in the euphotic layer of a large and deep lake south of the Alps (Lake Garda). The BCC was analyzed throughout two annual cycles by monthly samplings using the amplification and sequencing of the V3-V4 hypervariable region of the 16S rRNA gene by the MiSeq Illumina platform. The dominant and most diverse bacterioplankton phyla were among the more frequently reported in freshwater ecosystems, including the Proteobacteria, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria, and Planctomycetes. As a distinctive feature, the development of the BCC showed a cyclical temporal pattern in the two analyzed years and throughout the euphotic layer. The recurring temporal development was controlled by the strong seasonality in water temperature and thermal stratification, and by cyclical temporal changes in nutrients and, possibly, by the remarkable annual cyclical development of cyanobacteria and eukaryotic phytoplankton hosting bacterioplankton that characterizes Lake Garda. Further downstream analyses of operational taxonomic units associated to cyanobacteria allowed confirming the presence of the most abundant taxa previously identified by microscopy and/or phylogenetic analyses, as well as the presence of other small Synechococcales/Chroococcales and rare Nostocales never identified so far in the deep lakes south of the Alps. The implications of the high diversity and strong seasonality are relevant, opening perspectives for the definition of common and discriminating patterns characterizing the temporal and spatial distribution in the BCC, and for the application of the new sequencing technologies in the monitoring of water quality in large and deep lakes.


Assuntos
Bactérias/classificação , Biodiversidade , Lagos/microbiologia , Microbiota , Filogenia , Estações do Ano , Microbiologia da Água , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Cianobactérias/classificação , Cianobactérias/crescimento & desenvolvimento , DNA Bacteriano/genética , Ecossistema , Genes Bacterianos , Sequenciamento de Nucleotídeos em Larga Escala , Fitoplâncton/classificação , Fitoplâncton/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Temperatura , Qualidade da Água
3.
Water Res ; 258: 121783, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805870

RESUMO

The increasing frequency of cyanobacteria blooms in waterbodies caused by ecosystem eutrophication could endanger human health. This risk can be mitigated by effective monitoring incorporating molecular methods. To date, most molecular studies on toxigenic cyanobacteria have been limited to microcystins (MCs), disregarding other cyanotoxins, to freshwater planktic habitats while ignoring benthic habitats, and to limited geographic areas (usually one or a few specific waterbodies). In this study, we used PCR-based methods including PCR product sequencing and chemical-analytical methods (LC-MS/MS) to screen many plankton (n = 123) and biofilm samples (n = 113) originating from 29 Alpine lakes and 18 rivers for their cyanotoxin production potential. Both mcyE (indicating MC synthesis) and anaC (indicating anatoxin (ATX) synthesis) gene fragments were able to qualitatively predict MC or ATX occurrence. The abundance of mcyE gene fragments was significantly related to MC concentrations in plankton samples (R2 = 0.61). mcyE gene fragments indicative of MC synthesis were most abundant in planktic samples (65 %) and were assigned to the genera Planktothrix and Microcystis. However, mcyE rarely occurred in biofilms of lakes and rivers, i.e., 4 % and 5 %, respectively, and were assigned to Microcystis, Planktothrix, and Nostoc. In contrast, anaC gene fragments occurred frequently in planktic samples (14 % assigned to Tychonema, Phormidium (Microcoleus), and Oscillatoria), but also in biofilms of lakes (49 %) and rivers (18 %) and were assigned to the genera Phormidium, Oscillatoria, and Nostocales. The cyrJ gene fragment indicating cylindrospermopsin synthesis occurred only once in plankton (assigned to Dolichospermum), while saxitoxin synthesis potential was not detected. For plankton samples, monomictic and less eutrophic conditions were positively related to mcyE/MC occurrence frequency, while oligomictic conditions were related to anaC/ATX frequency. The anaC/ATX frequency in biofilm was related to the lake habitats generally showing higher biodiversity as revealed from metabarcoding in a parallel study.


Assuntos
Cianobactérias , Lagos , Rios , Lagos/microbiologia , Cianobactérias/genética , Rios/microbiologia , Microcistinas , Monitoramento Ambiental , Biofilmes , Toxinas Bacterianas/genética , Eutrofização
4.
Biology (Basel) ; 13(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38666814

RESUMO

Olindiid freshwater jellyfishes of the genus Craspedacusta Lankester, 1880 are native to eastern Asia; however, some species within the genus have been introduced worldwide and are nowadays present in all continents except Antarctica. To date, there is no consensus regarding the taxonomy within the genus Craspedacusta due to the morphological plasticity of the medusa stages. The species Craspedacusta sowerbii Lankester, 1880 was first recorded in Italy in 1946, and until 2017, sightings of the jellyfish Craspedacusta were reported for 40 water bodies. Here, we shed new light on the presence of the freshwater jellyfishes belonging to the genus Craspedacusta across the Italian peninsula, Sardinia, and Sicily. First, we report 21 new observations of this non-native taxon, of which eighteen refer to medusae sightings, two to environmental DNA sequencing, and one to the finding of polyps. Then, we investigate the molecular diversity of collected Craspedacusta specimens, using a Bayesian analysis of sequences of the mitochondrial gene encoding for Cytochrome c Oxidase Subunit I (mtDNA COI). Our molecular analysis shows the presence of two distinctive genetic lineages: (i) a group that comprises sequences obtained from populations ranging from central to northern Italy; (ii) a group that comprises three populations from northern Italy-i.e., those from the Lake Levico, the Lake Santo of Monte Terlago, and the Lake Endine-and the single known Sicilian population. We also report for the first time a mtDNA COI sequence obtained from a Craspedacusta medusa collected in Spain.

5.
Microbiol Resour Announc ; 12(11): e0084423, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37855624

RESUMO

We report the draft genome sequence of strain B0820 of the cyanobacterium Tychonema bourrellyi isolated from the epilimnion of Lake Garda and assembled from a metagenome of a non-axenic culture. The strain analyzed was shown to produce anatoxin-a, a potent neurotoxin that can cause fatal intoxication in exposed organisms.

6.
Sci Total Environ ; 834: 155175, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421505

RESUMO

The taxonomic identification of organisms based on the amplification of specific genetic markers (metabarcoding) implicitly requires adequate discriminatory information and taxonomic coverage of environmental DNA sequences in taxonomic databases. These requirements were quantitatively examined by comparing the determination of cyanobacteria and microalgae obtained by metabarcoding and light microscopy. We used planktic and biofilm samples collected in 37 lakes and 22 rivers across the Alpine region. We focused on two of the most used and best represented genetic markers in the reference databases, namely the 16S rRNA and 18S rRNA genes. A sequence gap analysis using blastn showed that, in the identity range of 99-100%, approximately 30% (plankton) and 60% (biofilm) of the sequences did not find any close counterpart in the reference databases (NCBI GenBank). Similarly, a taxonomic gap analysis showed that approximately 50% of the cyanobacterial and eukaryotic microalgal species identified by light microscopy were not represented in the reference databases. In both cases, the magnitude of the gaps differed between the major taxonomic groups. Even considering the species determined under the microscope and represented in the reference databases, 22% and 26% were still not included in the results obtained by the blastn at percentage levels of identity ≥95% and ≥97%, respectively. The main causes were the absence of matching sequences due to amplification and/or sequencing failure and potential misidentification in the microscopy step. Our results quantitatively demonstrated that in metabarcoding the main obstacles in the classification of 16S rRNA and 18S rRNA sequences and interpretation of high-throughput sequencing biomonitoring data were due to the existence of important gaps in the taxonomic completeness of the reference databases and the short length of reads. The study focused on the Alpine region, but the extent of the gaps could be much greater in other less investigated geographic areas.


Assuntos
Cianobactérias , Microalgas , Sequência de Bases , Cianobactérias/genética , Eucariotos , Região dos Alpes Europeus , Marcadores Genéticos , Microalgas/genética , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S
7.
Hydrobiologia ; 848(1): 53-75, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32836348

RESUMO

Our understanding on phytoplankton diversity has largely been progressing since the publication of Hutchinson on the paradox of the plankton. In this paper, we summarise some major steps in phytoplankton ecology in the context of mechanisms underlying phytoplankton diversity. Here, we provide a framework for phytoplankton community assembly and an overview of measures on taxonomic and functional diversity. We show how ecological theories on species competition together with modelling approaches and laboratory experiments helped understand species coexistence and maintenance of diversity in phytoplankton. The non-equilibrium nature of phytoplankton and the role of disturbances in shaping diversity are also discussed. Furthermore, we discuss the role of water body size, productivity of habitats and temperature on phytoplankton species richness, and how diversity may affect the functioning of lake ecosystems. At last, we give an insight into molecular tools that have emerged in the last decades and argue how it has broadened our perspective on microbial diversity. Besides historical backgrounds, some critical comments have also been made.

8.
Front Microbiol ; 11: 789, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457713

RESUMO

The structure of microbial communities, microalgae, heterotrophic protozoa and fungi contributes to characterize food webs and productivity and, from an anthropogenic point of view, the qualitative characteristics of water bodies. Traditionally, in freshwater environments many investigations have been directed to the study of pelagic microalgae ("phytoplankton") and periphyton (i.e., photosynthetic and mixotrophic protists) through the use of light microscopy (LM). While the number of studies on bacterioplankton communities have shown a substantial increase after the advent of high-throughput sequencing (HTS) approaches, the study of the composition, structure, and spatio-temporal patterns of microbial eukaryotes in freshwater environments was much less widespread. Moreover, the understanding of the correspondence between the relative phytoplankton abundances estimated by HTS and LM is still incomplete. Taking into account these limitations, this study examined the biodiversity and seasonality of the community of eukaryotic microplankton in the epilimnetic layer of a large and deep perialpine lake (Lake Garda) using HTS. The analyses were carried out at monthly frequency during 2014 and 2015. The results highlighted the existence of a rich and well diversified community and the presence of numerous phytoplankton taxa that were never identified by LM in previous investigations. Furthermore, the relative abundances of phytoplankton estimated by HTS and LM showed a significant relationship at different taxonomic ranks. In the 2 years of investigation, the temporal development of the whole micro-eukaryotic community showed a clear non-random and comparable distribution pattern, with the main taxonomic groups coherently distributed in the individual seasons. In perspective, the results obtained in this study highlight the importance of HTS approaches in assessing biodiversity and the relative importance of the main protist groups along environmental gradients, including those caused by anthropogenic impacts (e.g., eutrophication and climate change).

9.
Sci Rep ; 10(1): 20514, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239702

RESUMO

Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970-2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade-1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m-3 decade-1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade-1), but had high variability across lakes, with trends in individual lakes ranging from - 0.68 °C decade-1 to + 0.65 °C decade-1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.

10.
Front Microbiol ; 10: 2257, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636614

RESUMO

In deep lakes, many investigations highlighted the existence of exclusive groups of bacteria adapted to deep oxygenated and hypoxic and anoxic hypolimnia. Nevertheless, the extent of bacterial strain diversity has been much less scrutinized. This aspect is essential for an unbiased estimation of genetic variation, biodiversity, and population structure, which are essential for studying important research questions such as biogeographical patterns, temporal and spatial variability and the environmental factors affecting this variability. This study investigated the bacterioplankton community in the epilimnetic layers and in the oxygenated and hypoxic/anoxic hypolimnia of five large and deep lakes located at the southern border of the Alps using high throughput sequencing (HTS) analyses (16S rDNA) and identification of amplicon sequence variants (ASVs) resolving reads differing by as little as one nucleotide. The study sites, which included two oligomictic (Garda and Como) and three meromictic lakes (Iseo, Lugano, and Idro) with maximum depths spanning from 124 to 410 m, were chosen among large lakes to represent an oxic-hypoxic gradient. The analyses showed the existence of several unique ASVs in the three layers of the five lakes. In the case of cyanobacteria, this confirmed previous analyses made at the level of strains or based on oligotyping methods. As expected, the communities in the hypoxic/anoxic monimolimnia showed a strong differentiation from the oxygenated layer, with the exclusive presence in single lakes of several unique ASVs. In the meromictic lakes, results supported the hypothesis that the formation of isolated monimolimnia sustained the development of highly diversified bacterial communities through ecological selection, leading to the establishment of distinctive biodiversity zones. The genera identified in these layers are well-known to activate a wide range of redox reactions at low O2 conditions. As inferred from 16S rDNA data, the highly diversified and coupled processes sustained by the monimolimnetic microbiota are essential ecosystem services that enhance mineralization of organic matter and formation of reduced compounds, and also abatement of undesirable greenhouse gasses.

11.
Artigo em Inglês | MEDLINE | ID: mdl-30533925

RESUMO

Here, we report the genome of strain JJU2, a cyanobacterium of the family Hapalosiphonaceae known to be resistant to high cadmium levels, assembled from a nonaxenic, unialgal culture from Marinduque, Philippines. The draft genome is 7.1 Mb long with a GC content of 40.05% and contains 5,625 protein-coding genes.

12.
PLoS One ; 13(10): e0205260, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30289946

RESUMO

Many studies have focused on the interactive effects of temperature increases due to global warming and nutrient enrichment on phytoplankton communities. Recently, non-temperature effects of climate change (e.g., decreases in wind speed and increases in solar radiation) on large lakes have received increasing attention. To evaluate the relative contributions of both temperature and non-temperature effects on phytoplankton communities in a large eutrophic subtropical shallow lake, we analyzed long-term monitoring data from Lake Taihu, China from 1997 to 2016. Results showed that Lake Taihu's spring phytoplankton biovolume and composition changed dramatically over this time frame, with a change in dominant species. Stepwise multiple linear regression models indicated that spring phytoplankton biovolume was strongly influenced by total phosphorus (TP), light condition, wind speed and total nitrogen (TN) (radj2 = 0.8, p < 0.01). Partial redundancy analysis (pRDA) showed that light condition accounted for the greatest variation of phytoplankton community composition, followed by TP and wind speed, as well as the interactions between TP and wind speed. Our study points to the additional importance of non-temperature effects of climate change on phytoplankton community dynamics in Lake Taihu.


Assuntos
Cianobactérias/efeitos da radiação , Eutrofização/efeitos da radiação , Fitoplâncton/efeitos da radiação , Energia Solar , Vento , Biomassa , China , Mudança Climática , Cianobactérias/fisiologia , Monitoramento Ambiental/métodos , Lagos/microbiologia , Análise Multivariada , Fitoplâncton/fisiologia , Estações do Ano
13.
Environ Sci Pollut Res Int ; 25(2): 1306-1318, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29086174

RESUMO

Lake water level fluctuations (WLF) are an important factor driving the selection and seasonal dynamics of phytoplankton and potentially toxigenic cyanobacteria. Nevertheless, the relative importance of environmental drivers connected to WLF may be completely different, depending on the typology and use of waterbodies, latitude and climatic regimes. In this study, we investigated the impact of WLF in a large subtropical reservoir in south-eastern China (Hongfeng Reservoir, Guizhou Province). The study was based on monthly samplings carried out in 2014 in six stations. The strong increase in the water level observed in early summer caused a radical shift in the phytoplankton community. While in the pre-flooding period phytoplankton was composed of large diatoms, chrysophytes and Oscillatoriales (mostly Limnothrix sp.), the post-flooding period showed an increase in smaller and more competitive chlorophytes, smaller diatoms and cryptophytes better adapted to a fast colonisation of new and nutrient-rich environments. The environmental drivers that drove the change were dilution, flushing and interference with the seasonal water stratification processes. We concluded that, because WLF represents a complex variable integrating different physical effects in one explanatory descriptor, its value as a predictor of phytoplankton and cyanobacteria dynamics in lake ecosystems is difficult to generalise and needs to be investigated on a case-by-case basis. For this reason, considering the year-to-year hydrological variability that potentially characterise reservoirs, definite indications for management should be outlined considering more than 1-year study.


Assuntos
Cianobactérias/fisiologia , Lagos/análise , Microalgas/fisiologia , Fitoplâncton/fisiologia , China , Cianobactérias/crescimento & desenvolvimento , Monitoramento Ambiental , Lagos/microbiologia , Microalgas/crescimento & desenvolvimento , Fitoplâncton/crescimento & desenvolvimento , Dinâmica Populacional , Estações do Ano , Água/análise , Abastecimento de Água
14.
Genome Announc ; 6(5)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437085

RESUMO

Freshwater ecosystems represent 0.01% of the water on Earth, but they support 6% of global biodiversity that is still mostly uncharacterized. Here, we describe the genome sequences of three strains belonging to novel species in the Pseudomonas, Flavobacterium, and Sediminibacterium genera recovered from a water sample of Lake Garda, Italy.

15.
Sci Data ; 5: 180226, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30351308

RESUMO

Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment.


Assuntos
Cianobactérias/química , Monitoramento Ambiental , Lagos , Mudança Climática , Europa (Continente) , Fitoplâncton/química , Pigmentos Biológicos
16.
Sci Total Environ ; 627: 373-387, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426160

RESUMO

A first synoptic and trans-domain overview of plankton dynamics was conducted across the aquatic sites belonging to the Italian Long-Term Ecological Research Network (LTER-Italy). Based on published studies, checked and complemented with unpublished information, we investigated phytoplankton and zooplankton annual dynamics and long-term changes across domains: from the large subalpine lakes to mountain lakes and artificial lakes, from lagoons to marine coastal ecosystems. This study permitted identifying common and unique environmental drivers and ecological functional processes controlling seasonal and long-term temporal course. The most relevant patterns of plankton seasonal succession were revealed, showing that the driving factors were nutrient availability, stratification regime, and freshwater inflow. Phytoplankton and mesozooplankton displayed a wide interannual variability at most sites. Unidirectional or linear long-term trends were rarely detected but all sites were impacted across the years by at least one, but in many case several major stressor(s): nutrient inputs, meteo-climatic variability at the local and regional scale, and direct human activities at specific sites. Different climatic and anthropic forcings frequently co-occurred, whereby the responses of plankton communities were the result of this environmental complexity. Overall, the LTER investigations are providing an unparalleled framework of knowledge to evaluate changes in the aquatic pelagic systems and management options.


Assuntos
Ecossistema , Monitoramento Ambiental , Plâncton/fisiologia , Animais , Itália , Fitoplâncton , Dinâmica Populacional , Zooplâncton
17.
Harmful Algae ; 67: 1-12, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28755712

RESUMO

In the last decades, the cyanobacterium Dolichospermum lemmermannii showed an increasing spread to Southern Europe, raising serious concerns due to its ability to produce cyanotoxins. The widening of its geographic distribution and the observation of strains showing high optimum temperature underline its ecological heterogeneity, suggesting the existence of different ecotypes. To investigate its biogeography, new isolates from different European water bodies, together with strains maintained by the Norwegian Institute for Water Research Culture Collection of Algae, were genetically characterised for the 16S rRNA gene and compared with strains obtained from public repositories. Geographic distance highly influenced the differentiation of genotypes, further suggesting the concurrent role of geographic isolation, physical barriers and environmental factors in promoting the establishment of phylogenetic lineages adapted to specific habitats. Differences among populations were also examined by morphological analysis and evaluating the toxic potential of single strains, which revealed the exclusive ability of North European strains to produce microcystins, whereas the populations in Southern Europe tested negative for a wide range of cyanotoxins. The high dispersion ability and the existence of toxic genotypes indicate the possible spread of harmful blooms in other temperate regions.


Assuntos
Cianobactérias/classificação , Proliferação Nociva de Algas , Microcistinas/biossíntese , Filogeografia , Cianobactérias/isolamento & purificação , Cianobactérias/ultraestrutura , Funções Verossimilhança , Filogenia , Análise de Componente Principal , RNA Ribossômico 16S/genética
18.
Genome Announc ; 5(47)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167244

RESUMO

We describe here the draft genome sequence of the cyanobacterium Tychonema bourrellyi, assembled from a metagenome of a nonaxenic culture. The strain (FEM_GT703) was isolated from a freshwater sample taken from Lake Garda, Italy. The draft genome sequence represents the first assembled T. bourrellyi strain.

19.
Sci Total Environ ; 578: 417-426, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27839756

RESUMO

The availability of more than thirty years of historical satellite data is a valuable source which could be used as an alternative to the sparse in-situ data. We developed a new homogenised time series of daily day time Lake Surface Water Temperature (LSWT) over the last thirty years (1986-2015) at a spatial resolution of 1km from thirteen polar orbiting satellites. The new homogenisation procedure implemented in this study corrects for the different acquisition times of the satellites standardizing the derived LSWT to 12:00 UTC. In this study, we developed new time series of LSWT for five large lakes in Italy and evaluated the product with in-situ data from the respective lakes. Furthermore, we estimated the long-term annual and summer trends, the temporal coherence of mean LSWT between the lakes, and studied the intra-annual variations and long-term trends from the newly developed LSWT time series. We found a regional warming trend at a rate of 0.017°Cyr-1 annually and 0.032°Cyr-1 during summer. Mean annual and summer LSWT temporal patterns in these lakes were found to be highly coherent. Amidst the reported rapid warming of lakes globally, it is important to understand the long-term variations of surface temperature at a regional scale. This study contributes a new method to derive long-term accurate LSWT for lakes with sparse in-situ data thereby facilitating understanding of regional level changes in lake's surface temperature.

20.
FEMS Microbiol Ecol ; 92(10)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27402712

RESUMO

This work allowed assessing a widespread occurrence of Tychonema bourrellyi in the largest lakes south of the Alps (Garda, Iseo, Como and Maggiore). The taxonomy of the species was confirmed adopting a polyphasic approach, which included microscopic examinations, molecular (16S rRNA and rbcLX sequences) and (Lake Garda) ecological characterisations. Over 70% of the 36 isolates of Tychonema sampled from the four lakes tested positive for the presence of genes implicated in the biosynthesis of anatoxins (anaF and/or anaC) and for the production of anatoxin-a (ATX) and homoanatoxin-a (HTX). A detailed analysis carried out in Lake Garda showed strong ongoing changes in the cyanobacterial community, with populations of Tychonema developing with higher biovolumes compared to the microcystins (MCs) producer Planktothrix rubescens Moreover, the time × depth distribution of Tychonema was paralleled by a comparable distribution of ATX and HTX. The increasing importance of Tychonema in Lake Garda was also suggested by the opposite trends of ATX and MCs observed since 2009. These results suggest that radical changes are occurring in the largest lakes south of the Alps. Their verification and implications will require to be assessed by extending a complete experimental work to the other large perialpine lakes.


Assuntos
Toxinas Bacterianas/análise , Cianobactérias/classificação , Lagos/análise , Compostos Bicíclicos Heterocíclicos com Pontes/análise , Cianobactérias/genética , Toxinas de Cianobactérias , Lagos/microbiologia , Microcistinas/análise , Filogenia , RNA Ribossômico 16S/genética , Suíça , Tropanos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA