Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Immunol ; 25(2): 343-356, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177282

RESUMO

γδ T cells perform heterogeneous functions in homeostasis and disease across tissues. However, it is unclear whether these roles correspond to distinct γδ subsets or to a homogeneous population of cells exerting context-dependent functions. Here, by cross-organ multimodal single-cell profiling, we reveal that various mouse tissues harbor unique site-adapted γδ subsets. Epidermal and intestinal intraepithelial γδ T cells are transcriptionally homogeneous and exhibit epigenetic hallmarks of functional diversity. Through parabiosis experiments, we uncovered cellular states associated with cytotoxicity, innate-like rapid interferon-γ production and tissue repair functions displaying tissue residency hallmarks. Notably, our observations add nuance to the link between interleukin-17-producing γδ T cells and tissue residency. Moreover, transcriptional programs associated with tissue-resident γδ T cells are analogous to those of CD8+ tissue-resident memory T cells. Altogether, this study provides a multimodal landscape of tissue-adapted γδ T cells, revealing heterogeneity, lineage relationships and their tissue residency program.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T , Animais , Camundongos , Receptores de Antígenos de Linfócitos T gama-delta/genética
2.
Immunity ; 56(1): 78-92.e6, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630919

RESUMO

Tissue repair processes maintain proper organ function following mechanical or infection-related damage. In addition to antibacterial properties, mucosal associated invariant T (MAIT) cells express a tissue repair transcriptomic program and promote skin wound healing when expanded. Herein, we use a human-like mouse model of full-thickness skin excision to assess the underlying mechanisms of MAIT cell tissue repair function. Single-cell RNA sequencing analysis suggested that skin MAIT cells already express a repair program at steady state. Following skin excision, MAIT cells promoted keratinocyte proliferation, thereby accelerating healing. Using skin grafts, parabiosis, and adoptive transfer experiments, we show that MAIT cells migrated into the wound in a T cell receptor (TCR)-independent but CXCR6 chemokine receptor-dependent manner. Amphiregulin secreted by MAIT cells following excision promoted wound healing. Expression of the repair function was probably independent of sustained TCR stimulation. Overall, our study provides mechanistic insights into MAIT cell wound healing function in the skin.


Assuntos
Anfirregulina , Antígenos de Histocompatibilidade Classe I , Células T Invariantes Associadas à Mucosa , Cicatrização , Animais , Humanos , Camundongos , Anfirregulina/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor , Células T Invariantes Associadas à Mucosa/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
3.
Annu Rev Cell Dev Biol ; 33: 511-535, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28661722

RESUMO

A majority of T cells bearing the αß T cell receptor (TCR) are specific for peptides bound to polymorphic classical major histocompatibility complex (MHC) molecules. Smaller subsets of T cells are reactive toward various nonpeptidic ligands associated with nonpolymorphic MHC class-Ib (MHC-Ib) molecules. These cells have been termed unconventional for decades, even though only the composite antigen is different from the one seen by classical T cells. Herein, we discuss the identity of these particular T cells in light of the coevolution of their TCR and MHC-Ib restricting elements. We examine their original thymic development: selection on hematopoietic cells leading to the acquisition of an original differentiation program. Most of these cells acquire memory cell features during thymic maturation and exhibit unique patterns of migration into peripheral nonlymphoid tissues to become tissue resident. Thus, these cells are termed preset T cells, as they also display a variety of effector functions. They may act as microbial or danger sentinels, fight microbes, or regulate tissue homeostasis.


Assuntos
Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/metabolismo , Animais , Antígenos de Histocompatibilidade/metabolismo , Humanos , Ligantes , Timo/citologia
4.
Nat Immunol ; 19(9): 1035, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29880894

RESUMO

In the version of this Article originally published, the asterisks indicating statistical significance were missing from Supplementary Figure 6; the file with the correct figure is now available.

5.
Nat Immunol ; 18(12): 1321-1331, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28991267

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease that results from the destruction of pancreatic ß-cells by the immune system that involves innate and adaptive immune cells. Mucosal-associated invariant T cells (MAIT cells) are innate-like T-cells that recognize derivatives of precursors of bacterial riboflavin presented by the major histocompatibility complex (MHC) class I-related molecule MR1. Since T1D is associated with modification of the gut microbiota, we investigated MAIT cells in this pathology. In patients with T1D and mice of the non-obese diabetic (NOD) strain, we detected alterations in MAIT cells, including increased production of granzyme B, which occurred before the onset of diabetes. Analysis of NOD mice that were deficient in MR1, and therefore lacked MAIT cells, revealed a loss of gut integrity and increased anti-islet responses associated with exacerbated diabetes. Together our data highlight the role of MAIT cells in the maintenance of gut integrity and the control of anti-islet autoimmune responses. Monitoring of MAIT cells might represent a new biomarker of T1D, while manipulation of these cells might open new therapeutic strategies.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Antígenos de Histocompatibilidade Classe I/análise , Mucosa Intestinal/imunologia , Antígenos de Histocompatibilidade Menor/análise , Células T Invariantes Associadas à Mucosa/imunologia , Pâncreas/imunologia , Animais , Células Cultivadas , Microbioma Gastrointestinal/imunologia , Granzimas/biossíntese , Humanos , Células Secretoras de Insulina/imunologia , Mucosa Intestinal/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pâncreas/citologia
6.
Immunity ; 53(4): 710-723, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053329

RESUMO

Mucosal-associated invariant T (MAIT) cells are an evolutionarily conserved T cell subset, which reacts to most bacteria through T cell receptor (TCR)-mediated recognition of metabolites derived from the vitamin B2 biosynthetic pathway. Microbiota-derived signals affect all stages of MAIT cell biology including intra-thymic development, peripheral expansion, and functions in specific organs. In tissues, MAIT cells can integrate multiple signals and display effector functions involved in the defense against infectious pathogens. In addition to anti-bacterial activity, MAIT cells improve wound healing in the skin, suggesting a role in epithelium homeostasis through bi-directional interactions with the local microbiota. In humans, blood MAIT cell frequency is modified during several auto-immune diseases, which are often associated with microbiota dysbiosis, further emphasizing the potential interplay of MAIT cells with the microbiota. Here, we will review how microbes interact with MAIT cells, from initial intra-thymic development to tissue colonization and functions.


Assuntos
Bactérias/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Animais , Epitélio/imunologia , Humanos , Receptores de Antígenos de Linfócitos T/imunologia
7.
Trends Immunol ; 40(11): 975-977, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31623980

RESUMO

Three studies published in Cell Reports (Hinks et al., Lamichhane et al., and Leng et al.) describe the transcriptome of human and mouse mucosal-associated invariant T (MAIT) cells after cognate and noncognate stimulation. The results confirm the variability of MAIT cell effector functions and provide evidence of a new tissue-repair gene signature expressed upon T cell receptor (TCR) stimulation.


Assuntos
Células T Invariantes Associadas à Mucosa , Animais , Linfócitos T CD8-Positivos , Citocinas , Humanos , Camundongos , Receptores de Antígenos de Linfócitos T
8.
Immunol Rev ; 272(1): 120-38, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27319347

RESUMO

The MHC-related 1, MR1, molecule presents a new class of microbial antigens (derivatives of the riboflavin [Vitamin B2] biosynthesis pathway) to mucosal-associated invariant T (MAIT) cells. This raises many questions regarding antigens loading and intracellular trafficking of the MR1/ligand complexes. The MR1/MAIT field is also important because MAIT cells are very abundant in humans and their frequency is modified in many infectious and non-infectious diseases. Both MR1 and the invariant TCRα chain expressed by MAIT cells are strikingly conserved among species, indicating important functions. Riboflavin is synthesized by plants and most bacteria and yeasts but not animals, and its precursor derivatives activating MAIT cells are short-lived unless bound to MR1. The recognition of MR1 loaded with these compounds is therefore an exquisite manner to detect invasive bacteria. Herein, we provide an historical perspective of the field before describing the main characteristics of MR1, its ligands, and the few available data regarding its cellular biology. We then summarize the current knowledge of MAIT cell differentiation and discuss the definition of MAIT cells in comparison to related subsets. Finally, we describe the phenotype and effector activities of MAIT cells.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Imunidade nas Mucosas , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Riboflavina/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Diferenciação Celular , Antígenos de Histocompatibilidade/metabolismo , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo
9.
J Autoimmun ; 88: 61-74, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29054368

RESUMO

Several lines of evidence support a key role for CD8+ T cells in central nervous system tissue damage of patients with multiple sclerosis. However, the precise phenotype of the circulating CD8+ T cells that may be recruited from the peripheral blood to invade the CNS remains largely undefined to date. It has been suggested that IL-17 secreting CD8 (Tc17) T cells may be involved, and in humans these cells are characterized by the expression of CD161. We focused our study on a unique and recently described subset of CD8 T cells characterized by an intermediate expression of CD161 as its role in neuroinflammation has not been investigated to date. The frequency, phenotype, and function of CD8+ T cells with an intermediate CD161 expression level were characterized ex-vivo, in vitro, and in situ using RNAseq, RT-PCR, flow cytometry, TCR sequencing, and immunohistofluorescence of cells derived from healthy volunteers (n = 61), MS subjects (n = 90), as well as inflammatory (n = 15) and non-inflammatory controls (n = 6). We report here that CD8+CD161int T cells present characteristics of effector cells, up-regulate cell-adhesion molecules and have an increased ability to cross the blood-brain barrier and to secrete IL-17, IFNγ, GM-CSF, and IL-22. We further demonstrate that these cells are recruited and enriched in the CNS of MS subjects where they produce IL-17. In the peripheral blood, RNAseq, RT-PCR, high-throughput TCR repertoire analyses, and flow cytometry confirmed an increased effector and transmigration pattern of these cells in MS patients, with the presence of supernumerary clones compared to healthy controls. Our data demonstrate that intermediate levels of CD161 expression identifies activated and effector CD8+ T cells with pathogenic properties that are recruited to MS lesions. This suggests that CD161 may represent a biomarker and a valid target for the treatment of neuroinflammation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Sistema Nervoso Central/imunologia , Esclerose Múltipla/imunologia , Inflamação Neurogênica/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Masculino , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo
10.
Clin Immunol ; 166-167: 1-11, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27050759

RESUMO

BACKGROUND: The involvement of Mucosal Associated Invariant T (MAIT) cells, which are anti-microbial semi-invariant T cells, remains elusive in Multiple Sclerosis (MS). OBJECTIVE: Deciphering the potential involvement of MAIT cells in the MS inflammatory process. METHODS: By flow cytometry, blood MAIT cells from similar cohorts of MS patients and healthy volunteers (HV) were compared for frequency, phenotype, activation potential after in vitro TCR engagement by bacterial ligands and transmigration abilities through an in vitro model of blood-brain barrier. MS CNS samples were also studied by immunofluorescent staining and quantitative PCR. RESULTS AND CONCLUSION: Blood MAIT cells from relapsing-remitting MS patients and HV presented similar frequency, ex vivo effector phenotype and activation abilities. MAIT cells represented 0.5% of the total infiltrating T cells on 39 MS CNS lesions. This is low as compared to blood frequency (p<0.001), but consistent with their low transmigration rate. Finally, transcriptional over-expression of MR1 - which presents cognate antigens to MAIT cells - and of the activating cytokines IL-18 and IL-23 was evidenced in MS lesions, suggesting that the CNS microenvironment is suited to activate the few infiltrating MAIT cells. Taken together, these data place MAIT cells from MS patients as minor components of the inflammatory pathological process.


Assuntos
Encéfalo/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Adulto , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Estudos de Casos e Controles , Movimento Celular , Feminino , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunidade nas Mucosas , Imunofenotipagem , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-23/genética , Interleucina-23/imunologia , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Modelos Biológicos , Células T Invariantes Associadas à Mucosa/patologia , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/patologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
11.
J Neuroinflammation ; 12: 130, 2015 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-26141738

RESUMO

BACKGROUND: Astrocytes, the most abundant cell population in mammal central nervous system (CNS), contribute to a variety of functions including homeostasis, metabolism, synapse formation, and myelin maintenance. White matter (WM) reactive astrocytes are important players in amplifying autoimmune demyelination and may exhibit different changes in transcriptome profiles and cell function in a disease-context dependent manner. However, their transcriptomic profile has not yet been defined because they are difficult to purify, compared to gray matter astrocytes. Here, we isolated WM astrocytes by laser capture microdissection (LCM) in a murine model of multiple sclerosis to better define their molecular profile focusing on selected genes related to inflammation. Based on previous data indicating anti-inflammatory effects of estrogen only at high nanomolar doses, we also examined mRNA expression for enzymes involved in steroid inactivation. METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL6 mice with MOG35-55 immunization. Fluorescence activated cell sorting (FACS) analysis of a portion of individual spinal cords at peak disease was used to assess the composition of immune cell infiltrates. Using custom Taqman low-density-array (TLDA), we analyzed mRNA expression of 40 selected genes from immuno-labeled laser-microdissected WM astrocytes from lumbar spinal cord sections of EAE and control mice. Immunohistochemistry and double immunofluorescence on control and EAE mouse spinal cord sections were used to confirm protein expression in astrocytes. RESULTS: The spinal cords of EAE mice were infiltrated mostly by effector/memory T CD4+ cells and macrophages. TLDA-based profiling of LCM-astrocytes identified EAE-induced gene expression of cytokines and chemokines as well as inflammatory mediators recently described in gray matter reactive astrocytes in other murine CNS disease models. Strikingly, SULT1A1, but not other members of the sulfotransferase family, was expressed in WM spinal cord astrocytes. Moreover, its expression was further increased in EAE. Immunohistochemistry on spinal cord tissues confirmed preferential expression of this enzyme in WM astrocytic processes but not in gray matter astrocytes. CONCLUSIONS: We described here for the first time the mRNA expression of several genes in WM astrocytes in a mouse model of multiple sclerosis. Besides expected pro-inflammatory chemokines and specific inflammatory mediators increased during EAE, we evidenced relative high astrocytic expression of the cytoplasmic enzyme SULT1A1. As the sulfonation activity of SULT1A1 inactivates estradiol among other phenolic substrates, its high astrocytic expression may account for the relative resistance of this cell population to the anti-neuroinflammatory effects of estradiol. Blocking the activity of this enzyme during neuroinflammation may thus help the injured CNS to maintain the anti-inflammatory activity of endogenous estrogens or limit the dose of estrogen co-regimens for therapeutical purposes.


Assuntos
Arilsulfotransferase/metabolismo , Astrócitos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Perfilação da Expressão Gênica/métodos , Microdissecção e Captura a Laser/métodos , Substância Branca/metabolismo , Animais , Arilsulfotransferase/genética , Astrócitos/patologia , Biomarcadores/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Feminino , Glucuronidase/genética , Glucuronidase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Substância Branca/patologia
12.
Clin Immunol ; 155(2): 198-208, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267439

RESUMO

Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS) typically characterized by the recruitment of T cells into the CNS. However, certain subsets of B cells have been shown to negatively regulate autoimmune diseases and some data support a prominent role for B cells in MS physiopathology. For B cells in MS patients we analyzed subset frequency, cytokine secretion ability and suppressive properties. No differences in the frequencies of the B-cell subsets or in their ability to secrete cytokines were observed between MS and healthy volunteers (HV). Prestimulated B cells from MS patients also inhibited CD4(+)CD25(-) T cell proliferation with a similar efficiency as B cells from HV. Altogether, our data show that, in our MS patient cohort, regulatory B cells have conserved frequency and function.


Assuntos
Linfócitos B Reguladores/imunologia , Esclerose Múltipla/imunologia , Adolescente , Adulto , Idoso , Antígenos de Superfície/metabolismo , Linfócitos B Reguladores/efeitos dos fármacos , Linfócitos B Reguladores/metabolismo , Ligante de CD40/metabolismo , Estudos de Casos e Controles , Comunicação Celular/imunologia , Citocinas/biossíntese , Feminino , Humanos , Imunofenotipagem , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/metabolismo , Oligonucleotídeos/imunologia , Oligonucleotídeos/farmacologia , Fenótipo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto Jovem
13.
JCI Insight ; 9(5)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300704

RESUMO

Adoptive transfer of immunoregulatory cells can prevent or ameliorate graft-versus-host disease (GVHD), which remains the main cause of nonrelapse mortality after allogeneic hematopoietic stem cell transplantation. Mucosal-associated invariant T (MAIT) cells were recently associated with tissue repair capacities and with lower rates of GVHD in humans. Here, we analyzed the immunosuppressive effect of MAIT cells in an in vitro model of alloreactivity and explored their adoptive transfer in a preclinical xenogeneic GVHD model. We found that MAIT cells, whether freshly purified or short-term expanded, dose-dependently inhibited proliferation and activation of alloreactive T cells. In immunodeficient mice injected with human PBMCs, MAIT cells greatly delayed GVHD onset and decreased severity when transferred early after PBMC injection but could also control ongoing GVHD when transferred at delayed time points. This effect was associated with decreased proliferation and effector function of human T cells infiltrating tissues of diseased mice and was correlated with lower circulating IFN-γ and TNF-α levels and increased IL-10 levels. MAIT cells acted partly in a contact-dependent manner, which likely required direct interaction of their T cell receptor with MHC class I-related molecule (MR1) induced on host-reactive T cells. These results support the setup of clinical trials using MAIT cells as universal therapeutic tools to control severe GVHD or mucosal inflammatory disorders.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Células T Invariantes Associadas à Mucosa , Humanos , Camundongos , Animais , Leucócitos Mononucleares , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Receptores de Antígenos de Linfócitos T
14.
Sci Immunol ; 9(96): eadi8954, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905325

RESUMO

Intestinal inflammation shifts microbiota composition and metabolism. How the host monitors and responds to such changes remains unclear. Here, we describe a protective mechanism by which mucosal-associated invariant T (MAIT) cells detect microbiota metabolites produced upon intestinal inflammation and promote tissue repair. At steady state, MAIT ligands derived from the riboflavin biosynthesis pathway were produced by aerotolerant bacteria residing in the colonic mucosa. Experimental colitis triggered luminal expansion of riboflavin-producing bacteria, leading to increased production of MAIT ligands. Modulation of intestinal oxygen levels suggested a role for oxygen in inducing MAIT ligand production. MAIT ligands produced in the colon rapidly crossed the intestinal barrier and activated MAIT cells, which expressed tissue-repair genes and produced barrier-promoting mediators during colitis. Mice lacking MAIT cells were more susceptible to colitis and colitis-driven colorectal cancer. Thus, MAIT cells are sensitive to a bacterial metabolic pathway indicative of intestinal inflammation.


Assuntos
Colite , Disbiose , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Células T Invariantes Associadas à Mucosa , Animais , Células T Invariantes Associadas à Mucosa/imunologia , Colite/imunologia , Colite/microbiologia , Disbiose/imunologia , Camundongos , Microbioma Gastrointestinal/imunologia , Camundongos Knockout , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Riboflavina/imunologia
15.
J Exp Med ; 221(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38117256

RESUMO

Mucosal-associated invariant T (MAIT) cells harbor evolutionarily conserved TCRs, suggesting important functions. As human and mouse MAIT functional programs appear distinct, the evolutionarily conserved MAIT functional features remain unidentified. Using species-specific tetramers coupled to single-cell RNA sequencing, we characterized MAIT cell development in six species spanning 110 million years of evolution. Cross-species analyses revealed conserved transcriptional events underlying MAIT cell maturation, marked by ZBTB16 induction in all species. MAIT cells in human, sheep, cattle, and opossum acquired a shared type-1/17 transcriptional program, reflecting ancestral features. This program was also acquired by human iNKT cells, indicating common differentiation for innate-like T cells. Distinct type-1 and type-17 MAIT subsets developed in rodents, including pet mice and genetically diverse mouse strains. However, MAIT cells further matured in mouse intestines to acquire a remarkably conserved program characterized by concomitant expression of type-1, type-17, cytotoxicity, and tissue-repair genes. Altogether, the study provides a unifying view of the transcriptional features of innate-like T cells across evolution.


Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Bovinos , Animais , Camundongos , Ovinos , Diferenciação Celular , Membrana Celular , Reparo por Excisão , Especificidade da Espécie , Mamíferos/genética
16.
J Exp Med ; 221(6)2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563818

RESUMO

Uveal melanoma (UM) is the most common cancer of the eye. The loss of chromosome 3 (M3) is associated with a high risk of metastases. M3 tumors are more infiltrated by T-lymphocytes than low-risk disomic-3 (D3) tumors, contrasting with other tumor types in which T cell infiltration correlates with better prognosis. Whether these T cells represent an antitumor response and how these T cells would be primed in the eye are both unknown. Herein, we characterized the T cells infiltrating primary UMs. CD8+ and Treg cells were more abundant in M3 than in D3 tumors. CD39+PD-1+CD8+ T cells were enriched in M3 tumors, suggesting specific responses to tumor antigen (Ag) as confirmed using HLA-A2:Melan-A tetramers. scRNAseq-VDJ analysis of T cells evidenced high numbers of proliferating CD39+PD1+CD8+ clonal expansions, suggesting in situ antitumor Ag responses. TCRseq and tumor-Ag tetramer staining characterized the recirculation pattern of the antitumor responses in M3 and D3 tumors. Thus, tumor-Ag responses occur in localized UMs, raising the question of the priming mechanisms in the absence of known lymphatic drainage.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Melanoma/terapia , Linfócitos T CD8-Positivos , Drenagem
17.
STAR Protoc ; 4(3): 102419, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37432855

RESUMO

Generating knockout mice for target molecules in specific T cell populations, without subset-specific promoters, is time-consuming and costly. Here, we describe steps for enriching mucosal-associated invariant T cells from the thymus, expanding them in vitro and performing a CRISPR-Cas9 knockout. We then detail procedure for injecting the knockout cells into wounded Cd3ε-/- mice and characterizing them in the skin. For complete details on the use and execution of this protocol, please refer to du Halgouet et al. (2023).1.


Assuntos
Células T Invariantes Associadas à Mucosa , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Genômica , Camundongos Knockout , Regiões Promotoras Genéticas
18.
Clin Immunol ; 144(2): 117-26, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22717772

RESUMO

Multiple sclerosis (MS) is considered as an autoimmune disease in which T cell reactivity to self-antigens expressed in the brain, particularly myelin antigens, plays a pivotal role. Various myelin-derived peptides, including peptides of myelin basic protein (MBP), proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG) have been studied as putative target in MS. However, CD4(+) and CD8(+) T cells recognizing autoantigens from brain have been detected in the blood of MS patients as well as the blood of normal individuals. Here we review and discuss studies focused on the assessment of the frequency of autoreactive T cells responding to a given antigen using different assays including LDA, IFNγ-ELISPOT and TRAP (T cell Recognition of Antigen Presenting Cells by Protein transfer) in MS.


Assuntos
Autoimunidade , Epitopos de Linfócito T/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Bainha de Mielina/imunologia , Linfócitos T/imunologia , Antígenos HLA/imunologia , Humanos
19.
Mol Immunol ; 130: 31-36, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33352411

RESUMO

MAIT cells arise in the thymus following rearrangement of a T cell receptor (TCR) reactive against microbial vitamin B2-derived metabolites presented by the MHC-Ib molecule, MR1. Mechanisms that are conserved in mammals ensure the frequent production of MR1-restricted TCRs and the intra-thymic differentiation of MR1-restricted thymocytes into effector cells. Upon thymic egress and migration into non-lymphoid tissues, additional signals modulate MAIT cell functions according to each local tissue environment. Here, we review the recent progress made towards a better understanding of the establishment of this major immune cell subset.


Assuntos
Diferenciação Celular , Células T Invariantes Associadas à Mucosa/fisiologia , Timo/citologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Rearranjo Gênico do Linfócito T/genética , Rearranjo Gênico do Linfócito T/fisiologia , Humanos , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Especificidade da Espécie , Timócitos/imunologia , Timócitos/metabolismo , Timo/imunologia
20.
J Exp Med ; 216(1): 133-151, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30518599

RESUMO

Mucosal-associated invariant T (MAIT) cells are abundant T cells with unique specificity for microbial metabolites. MAIT conservation along evolution indicates important functions, but their low frequency in mice has hampered their detailed characterization. Here, we performed the first transcriptomic analysis of murine MAIT cells. MAIT1 (RORγtneg) and MAIT17 (RORγt+) subsets were markedly distinct from mainstream T cells, but quasi-identical to NKT1 and NKT17 subsets. The expression of similar programs was further supported by strong correlations of MAIT and NKT frequencies in various organs. In both mice and humans, MAIT subsets expressed gene signatures associated with tissue residency. Accordingly, parabiosis experiments demonstrated that MAIT and NKT cells are resident in the spleen, liver, and lungs, with LFA1/ICAM1 interactions controlling MAIT1 and NKT1 retention in spleen and liver. The transcriptional program associated with tissue residency was already expressed in thymus, as confirmed by adoptive transfer experiments. Altogether, shared thymic differentiation processes generate "preset" NKT and MAIT subsets with defined effector functions, associated with specific positioning into tissues.


Assuntos
Células T Matadoras Naturais/imunologia , Timo/imunologia , Transcriptoma/imunologia , Animais , Feminino , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Fígado/imunologia , Fígado/patologia , Pulmão/imunologia , Pulmão/patologia , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Células T Matadoras Naturais/patologia , Especificidade de Órgãos , Baço/imunologia , Baço/patologia , Timo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA