Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375340

RESUMO

The complex structure of turning aggravates obtaining the desired results in terms of tool wear and surface roughness. The existence of high temperature and pressure make difficult to reach and observe the cutting area. In-direct tool condition, monitoring systems provide tracking the condition of cutting tool via several released or converted energy types, namely, heat, acoustic emission, vibration, cutting forces and motor current. Tool wear inevitably progresses during metal cutting and has a relationship with these energy types. Indirect tool condition monitoring systems use sensors situated around the cutting area to state the wear condition of the cutting tool without intervention to cutting zone. In this study, sensors mostly used in indirect tool condition monitoring systems and their correlations between tool wear are reviewed to summarize the literature survey in this field for the last two decades. The reviews about tool condition monitoring systems in turning are very limited, and relationship between measured variables such as tool wear and vibration require a detailed analysis. In this work, the main aim is to discuss the effect of sensorial data on tool wear by considering previous published papers. As a computer aided electronic and mechanical support system, tool condition monitoring paves the way for machining industry and the future and development of Industry 4.0.

2.
Materials (Basel) ; 14(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34576369

RESUMO

Tribological properties are important to evaluate the in-service conditions of machine elements, especially those which work as tandem parts. Considering their wide range of application areas, metal matrix composites (MMCs) serve as one of the most significant materials equipped with desired mechanical properties such as strength, density, and lightness according to the place of use. Therefore, it is crucial to determine the wear performance of these materials to obtain a longer life and to overcome the possible structural problems which emerge during the production process. In this paper, extensive discussion and evaluation of the tribological performance of newly produced spheroidal graphite cast iron-reinforced (GGG-40) tin bronze (CuSn10) MMCs, including optimization, statistical, graphical, and microstructural analysis for contact zone temperature and specific wear rate, are presented. For this purpose, two levels of production temperature (400 and 450 °C), three levels of pressure (480, 640, and 820 MPa), and seven different samples reinforced by several ingredients (from 0 to 40 wt% GGG-40, pure CuSn10, and GGG-40) were investigated. According to the obtained statistical results, the reinforcement ratio is remarkably more effective on contact zone temperature and specific wear rate than temperature and pressure. A pure CuSn10 sample is the most suitable option for contact zone temperature, while pure GGG-40 seems the most suitable material for specific wear rates according to the optimization results. These results reveal the importance of reinforcement for better mechanical properties and tribological performance in measuring the capability of MMCs.

3.
Materials (Basel) ; 14(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204513

RESUMO

Surface roughness reflects the quality of many operational parameters, namely service life, wear characteristics, working performance and tribological behavior of the produced part. Therefore, tribological performance is critical for the components used as tandem parts, especially for the MMCs (Metal Matrix Composites) which are a unique class of materials having extensive application areas such as aerospace, aeronautics, marine engineering and the defense industry. Current work covers the optimization study of production parameters for surface roughness and tribological indicators of newly produced cast iron reinforced bronze MMCs. In this context, two levels of temperature (400 and 450 °C), three levels of pressure (480, 640 and 820 MPa) and seven levels of reinforcement ratios (60/40, 70/30, 80/20, 90/10, 100/0 of GGG40/CuSn10, pure bronze-as received and pure cast iron-as received) are considered. According to the findings obtained by Taguchi's signal-to-noise ratios, the reinforcement ratio has a dominant effect on surface roughness parameters (Ra and Rz), the coefficient of friction and the weight loss in different levels. In addition, 100/0 reinforced GGG40/CuSn10 gives minimum surface roughness, pure cast iron provides the best weight loss and pure bronze offers the desired coefficient of friction. The results showed the importance of material ingredients on mechanical properties by comparing a wide range of samples from starting the production phase, which provides a perspective for manufacturers to meet the market supply as per human requirements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA