Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Am J Respir Crit Care Med ; 209(4): 427-443, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37971785

RESUMO

Rationale: Microplastics are a pressing global concern, and inhalation of microplastic fibers has been associated with interstitial and bronchial inflammation in flock workers. However, how microplastic fibers affect the lungs is unknown. Objectives: Our aim was to assess the effects of 12 × 31 µm nylon 6,6 (nylon) and 15 × 52 µm polyethylene terephthalate (polyester) textile microplastic fibers on lung epithelial growth and differentiation. Methods: We used human and murine alveolar and airway-type organoids as well as air-liquid interface cultures derived from primary lung epithelial progenitor cells and incubated these with either nylon or polyester fibers or nylon leachate. In addition, mice received one dose of nylon fibers or nylon leachate, and, 7 days later, organoid-forming capacity of isolated epithelial cells was investigated. Measurements and Main Results: We observed that nylon microfibers, more than polyester, inhibited developing airway organoids and not established ones. This effect was mediated by components leaching from nylon. Epithelial cells isolated from mice exposed to nylon fibers or leachate also formed fewer airway organoids, suggesting long-lasting effects of nylon components on epithelial cells. Part of these effects was recapitulated in human air-liquid interface cultures. Transcriptomic analysis revealed upregulation of Hoxa5 after exposure to nylon fibers. Inhibiting Hoxa5 during nylon exposure restored airway organoid formation, confirming Hoxa5's pivotal role in the effects of nylon. Conclusions: These results suggest that components leaching from nylon 6,6 may especially harm developing airways and/or airways undergoing repair, and we strongly encourage characterization in more detail of both the hazard of and the exposure to microplastic fibers.


Assuntos
Caprolactama/análogos & derivados , Microplásticos , Plásticos , Polímeros , Camundongos , Humanos , Animais , Nylons , Têxteis , Poliésteres
2.
Small ; 19(39): e2303267, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37236202

RESUMO

Nanoparticles of different properties, such as size, charge, and rigidity, are used for drug delivery. Upon interaction with the cell membrane, because of their curvature, nanoparticles can bend the lipid bilayer. Recent results show that cellular proteins capable of sensing membrane curvature are involved in nanoparticle uptake; however, no information is yet available on whether nanoparticle mechanical properties also affect their activity. Here liposomes and liposome-coated silica are used as a model system to compare uptake and cell behavior of two nanoparticles of similar size and charge, but different mechanical properties. High-sensitivity flow cytometry, cryo-TEM, and fluorescence correlation spectroscopy confirm lipid deposition on the silica. Atomic force microscopy is used to quantify the deformation of individual nanoparticles at increasing imaging forces, confirming that the two nanoparticles display distinct mechanical properties. Uptake studies in HeLa and A549 cells indicate that liposome uptake is higher than for the liposome-coated silica. RNA interference studies to silence their expression show that different curvature-sensing proteins are involved in the uptake of both nanoparticles in both cell types. These results confirm that curvature-sensing proteins have a role in nanoparticle uptake, which is not restricted to harder nanoparticles, but includes softer nanomaterials commonly used for nanomedicine applications.


Assuntos
Lipossomos , Nanopartículas , Humanos , Lipossomos/química , Nanopartículas/química , Proteínas , Células HeLa , Dióxido de Silício/química
3.
Nano Lett ; 22(7): 3118-3124, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35377663

RESUMO

Nanosized drug carriers enter cells via active mechanisms of endocytosis but the pathways involved are often not clarified. Cells possess several mechanisms to generate membrane curvature during uptake. However, the mechanisms of membrane curvature generation for nanoparticle uptake have not been explored so far. Here, we combined different methods to characterize how silica nanoparticles with a human serum corona enter cells. In these conditions, silica nanoparticles are internalized via the LDL receptor (LDLR). We demonstrate that despite the interaction with LDLR, uptake is not clathrin-mediated, as usually observed for this receptor. Additionally, silencing the expression of different proteins involved in clathrin-independent mechanisms and several BAR-domain proteins known to generate membrane curvature strongly reduces nanoparticle uptake. Thus, nanosized objects targeted to specific receptors, such as here LDLR, can enter cells via different mechanisms than their endogenous ligands. Additionally, nanoparticles may trigger alternative mechanisms of membrane curvature generation for their internalization.


Assuntos
Nanopartículas , Dióxido de Silício , Transporte Biológico , Proteínas de Transporte , Clatrina/metabolismo , Endocitose , Humanos , Dióxido de Silício/metabolismo
4.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37511562

RESUMO

This review is an outlook on CAR-T development up to the beginning of 2023, with a special focus on the European landscape and its regulatory field, highlighting the main features and limitations affecting this innovative therapy in cancer treatment. We analysed the current state of the art in the EU and set out a showcase of the field's potential advancements in the coming years. For this analysis, the data used came from the available scientific literature as well as from the European Medicines Agency and from clinical trial databases. The latter were investigated to query the studies on CAR-Ts that are active and/or relevant to the review process. As of this writing, CAR-Ts have started to move past the "ceiling" of third-line treatment with positive results in comparison trials with the Standard of Care (SoC). One such example is the trial Zuma-7 (NCT03391466), which resulted in approval of CAR-T products (Yescarta™) for second-line treatment, a crucial achievement for the field which can increase the use of this type of therapy. Despite exciting results in clinical trials, limitations are still many: they regard access, production, duration of response, resistance, safety, overall efficacy, and cost mitigation strategies. Nonetheless, CAR-T constructs are becoming more diverse, and the technology is starting to produce some remarkable results in treating diseases other than cancer.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Neoplasias/tratamento farmacológico , Receptores de Antígenos Quiméricos/uso terapêutico , Tecnologia , Ensaios Clínicos como Assunto
5.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613705

RESUMO

Extracellular vesicles are membrane-bound carriers with complex cargoes, which play a major role in intercellular communication, for instance, in the context of the immune response. Macrophages are known to release extracellular vesicles in response to different stimuli, and changes in their size, number, and composition may provide important insights into the responses induced. Macrophages are also known to be highly efficient in clearing nanoparticles, when in contact with them, and in triggering the immune system. However, little is known about how the nature and composition of the vesicles released by these cells may vary upon nanoparticle exposure. In order to study this, in this work, alveolar-like macrophages were exposed to a panel of nanoparticles with varying surface and composition, including amino-modified and carboxylated polystyrene and plain silica. We previously showed that these nanoparticles induced very different responses in these cells. Here, experimental conditions were carefully tuned in order to separate the extracellular vesicles released by the macrophages several hours after exposure to sub-toxic concentrations of the same nanoparticles. After separation, different methods, including high-sensitivity flow cytometry, TEM imaging, Western blotting, and nanoparticle tracking analysis, were combined in order to characterize the extracellular vesicles. Finally, proteomics was used to determine their composition and how it varied upon exposure to the different nanoparticles. Our results show that depending on the nanoparticles' properties. The macrophages produced extracellular vesicles of varying number, size, and protein composition. This indicates that macrophages release specific signals in response to nanoparticles and overall suggests that extracellular vesicles can reflect subtle responses to nanoparticles and nanoparticle impact on intercellular communication.


Assuntos
Vesículas Extracelulares , Nanopartículas , Macrófagos/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Fagocitose , Nanopartículas/toxicidade
6.
Small ; 17(34): e2100887, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34272923

RESUMO

The design of targeted nanomedicines requires intracellular space- and time-resolved data of nanoparticle distribution following uptake. Current methods to study intracellular trafficking, such as dynamic colocalization by fluorescence microscopy in live cells, are usually low throughput and require extensive analysis of large datasets to quantify colocalization in several individual cells. Here a method based on flow cytometry to easily detect and characterize the organelles in which nanoparticles are internalized and trafficked over time is proposed. Conventional cell fractionation methods are combined with immunostaining and high-sensitivity organelle flow cytometry to get space-resolved data of nanoparticle intracellular distribution. By extracting the organelles at different times, time-resolved data of nanoparticle intracellular trafficking are obtained. The method is validated by determining how nanoparticle size affects the kinetics of arrival to the lysosomes. The results demonstrate that this method allows high-throughput analysis of nanoparticle uptake and intracellular trafficking by cells, therefore it can be used to determine how nanoparticle design affects their intracellular behavior.


Assuntos
Endocitose , Nanopartículas , Citometria de Fluxo , Nanomedicina , Organelas
7.
Arch Toxicol ; 95(4): 1267-1285, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33555372

RESUMO

Chronic exposure and accumulation of persistent nanomaterials by cells have led to safety concerns on potential long-term effects induced by nanoparticles, including chronic inflammation and fibrosis. With this in mind, we used murine precision-cut liver tissue slices to test potential induction of inflammation and onset of fibrosis upon 72 h exposure to different nanomaterials (0-200 µg/ml). Tissue slices were chosen as an advanced ex vivo 3D model to better resemble the complexity of the in vivo tissue environment, with a focus on the liver where most nanomaterials accumulate. Effects on the onset of fibrosis and inflammation were investigated, with particular care in optimizing nanoparticle exposure conditions to tissue. Thus, we compared the effects induced on slices exposed to nanoparticles in the presence of excess free proteins (in situ), or after corona isolation. Slices exposed to daily-refreshed nanoparticle dispersions were used to test additional effects due to ageing of the dispersions. Exposure to amino-modified polystyrene nanoparticles in serum-free conditions led to strong inflammation, with stronger effects with daily-refreshed dispersions. Instead, no inflammation was observed when slices were exposed to the same nanoparticles in medium supplemented with serum to allow corona formation. Similarly, no clear signs of inflammation nor of onset of fibrosis were detected after exposure to silica, titania or carboxylated polystyrene in all conditions tested. Overall, these results show that liver slices can be used to test nanoparticle-induced inflammation in real tissue, and that the exposure conditions and ageing of the dispersions can strongly affect tissue responses to nanoparticles.


Assuntos
Inflamação/induzido quimicamente , Cirrose Hepática/induzido quimicamente , Fígado/efeitos dos fármacos , Nanopartículas/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Feminino , Inflamação/patologia , Fígado/patologia , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Poliestirenos/química , Dióxido de Silício/química , Técnicas de Cultura de Tecidos , Titânio/química
8.
Mol Cell Proteomics ; 18(5): 892-908, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30808728

RESUMO

Staphylococcus aureus is infamous for causing recurrent infections of the human respiratory tract. This is a consequence of its ability to adapt to different niches, including the intracellular milieu of lung epithelial cells. To understand the dynamic interplay between epithelial cells and the intracellular pathogen, we dissected their interactions over 4 days by mass spectrometry. Additionally, we investigated the dynamics of infection through live cell imaging, immunofluorescence and electron microscopy. The results highlight a major role of often overlooked temporal changes in the bacterial and host metabolism, triggered by fierce competition over limited resources. Remarkably, replicating bacteria reside predominantly within membrane-enclosed compartments and induce apoptosis of the host within ∼24 h post infection. Surviving infected host cells carry a subpopulation of non-replicating bacteria in the cytoplasm that persists. Altogether, we conclude that, besides the production of virulence factors by bacteria, it is the way in which intracellular resources are used, and how host and intracellular bacteria subsequently adapt to each other that determines the ultimate outcome of the infectious process.


Assuntos
Brônquios/patologia , Endocitose , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/metabolismo , Apoptose , Proteínas de Bactérias/metabolismo , Linhagem Celular , Citosol/metabolismo , Células Epiteliais/ultraestrutura , Interações Hospedeiro-Patógeno , Humanos , Proteoma/metabolismo , Staphylococcus aureus/ultraestrutura
9.
Small ; 16(21): e1906523, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32077626

RESUMO

Much effort within the nanosafety field is currently focused on the use of advanced in vitro models to reduce the gap between in vitro and in vivo studies. Within this context, precision-cut tissue slices are a unique ex vivo model to investigate nanoparticle impact using live tissue from laboratory animals and even humans. However, several aspects of the basic mechanisms of nanoparticle interactions with tissue have not yet been elucidated. To this end, liver slices are exposed to carboxylated and amino-modified polystyrene known to have a different impact on cells. As observed in standard cell cultures, amino-modified polystyrene nanoparticles induce apoptosis, and their impact is affected by the corona forming on their surface in biological fluids. Subsequently, a detailed time-resolved study of nanoparticle uptake and distribution in the tissue is performed, combining fluorescence imaging and flow cytometry on cells recovered after tissue digestion. As observed in vivo, the Kupffer cells accumulate high nanoparticle amounts and, interestingly, they move within the tissue towards the slice borders. Similar observations are reproduced in liver slices from human tissue. Thus, tissue slices can be used to reproduce ex vivo important features of nanoparticle outcomes in the liver and study nanoparticle impact on real tissue.


Assuntos
Fígado , Nanopartículas , Poliestirenos , Animais , Citometria de Fluxo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Imagem Óptica , Poliestirenos/química , Poliestirenos/metabolismo , Poliestirenos/farmacologia
10.
Arch Toxicol ; 94(9): 2981-2995, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32592078

RESUMO

The pathogenicity of quartz involves lysosomal alteration in alveolar macrophages. This event triggers the inflammatory cascade that may lead to quartz-induced silicosis and eventually lung cancer. Experiments with synthetic quartz crystals recently showed that quartz dust is cytotoxic only when the atomic order of the crystal surfaces is upset by fracturing. Cytotoxicity was not observed when quartz had as-grown, unfractured surfaces. These findings raised questions on the potential impact of quartz surfaces on the phagolysosomal membrane upon internalization of the particles by macrophages. To gain insights on the surface-induced cytotoxicity of quartz, as-grown and fractured quartz particles in respirable size differing only in surface properties related to fracturing were prepared and physico-chemically characterized. Synthetic quartz particles were compared to a well-known toxic commercial quartz dust. Membranolysis was assessed on red blood cells, and quartz uptake, cell viability and effects on lysosomes were assessed on human PMA-differentiated THP-1 macrophages, upon exposing cells to increasing concentrations of quartz particles (10-250 µg/ml). All quartz samples were internalized, but only fractured quartz elicited cytotoxicity and phagolysosomal alterations. These effects were blunted when uptake was suppressed by incubating macrophages with particles at 4 °C. Membranolysis, but not cytotoxicity, was quenched when fractured quartz was incubated with cells in protein-supplemented medium. We propose that, upon internalization, the phagolysosome environment rapidly removes serum proteins from the quartz surface, restoring quartz membranolytic activity in the phagolysosomes. Our findings indicate that the cytotoxic activity of fractured quartz is elicited by promoting phagolysosomal membrane alteration.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Material Particulado/toxicidade , Quartzo/toxicidade , Sobrevivência Celular , Células Cultivadas , Poeira , Humanos , Macrófagos , Fagossomos , Propriedades de Superfície
11.
Arch Toxicol ; 94(1): 173-186, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677074

RESUMO

Macrophages play a major role in the removal of foreign materials, including nano-sized materials, such as nanomedicines and other nanoparticles, which they accumulate very efficiently. Because of this, it is recognized that for a safe development of nanotechnologies and nanomedicine, it is essential to investigate potential effects induced by nano-sized materials on macrophages. To this aim, in this work, a recently established model of primary murine alveolar-like macrophages was used to investigate macrophage responses to two well-known nanoparticle models: 50 nm amino-modified polystyrene, known to induce cell death via lysosomal damage and apoptosis in different cell types, and 50 nm silica nanoparticles, which are generally considered non-toxic. Then, a time-resolved study was performed to characterize in detail the response of the macrophages following exposure to the two nanoparticles. As expected, exposure to the amino-modified polystyrene led to cell death, but surprisingly no lysosomal swelling or apoptosis were detected. On the contrary, a peculiar mitochondrial membrane hyperpolarization was observed, accompanied by endoplasmic reticulum stress (ER stress), increased cellular reactive oxygen species (ROS) and changes of metabolic activity, ultimately leading to cell death. Strong toxic responses were observed also after exposure to silica, which included mitochondrial ROS production, mitochondrial depolarization and cell death by apoptosis. Overall, these results showed that exposure to the two nanoparticles led to a very different series of intracellular events, suggesting that the macrophages responded differently to the two nanoparticle models. Similar time-resolved studies are required to characterize the response of macrophages to nanoparticles, as a key parameter in nanosafety assessment.


Assuntos
Macrófagos/efeitos dos fármacos , Nanopartículas/toxicidade , Poliestirenos/toxicidade , Dióxido de Silício/toxicidade , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Células Cultivadas , Difusão Dinâmica da Luz , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos Alveolares/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Poliestirenos/química , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
12.
Nanomedicine ; 30: 102300, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32931929

RESUMO

Zwitterionic molecules are used as an alternative to PEGylation to reduce protein adsorption on nanocarriers. Nonetheless, little is known on the effect of zwitterionic modifications on the mechanisms cells use for nanocarrier uptake. In this study, the uptake mechanism of liposomes containing zwitterionic or negatively charged lipids was characterized using pharmacological inhibitors and RNA interference on HeLa cells to block endocytosis. As expected, introducing zwitterionic lipids reduced protein adsorption in serum, as well as uptake efficiency. Blocking clathrin-mediated endocytosis strongly decreased the uptake of the negatively charged liposomes, but not the zwitterionic ones. Additionally, inhibition of macropinocytosis reduced uptake of both liposomes, but blocking actin polymerization had effects only on the negatively charged ones. Overall, the results clearly indicated that the two liposomes were internalized by HeLa cells using different pathways. Thus, introducing zwitterionic lipids affects not only protein adsorption and uptake efficiency, but also the mechanisms of liposome uptake by cells.


Assuntos
Lipossomos , Endocitose , Citometria de Fluxo , Células HeLa , Humanos , Cinética , Interferência de RNA
13.
Inorg Chem ; 58(21): 14586-14599, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31618015

RESUMO

In this work, we report the synthesis of [Ru(phen)32+]-based complexes and their use as photosensitizers for photodynamic therapy (PDT), a treatment of pathological conditions based on the photoactivation of bioactive compounds, which are not harmful in the absence of light irradiation. Of these complexes, Ru-PhenISA and Ru-PhenAN are polymer conjugates containing less than 5%, (on a molar basis), photoactive units. Their performance is compared with that of a small [Ru(phen)32+] compound, [Ru(phen)2BAP](OTf)2 (BAP = 4-(4'-aminobutyl)-1,10-phenanthroline, OTf = triflate anion), used as a model of the photoactive units. The polymer ligands, PhenISA and PhenAN, are polyamidoamines with different acid-base properties. At physiological pH, the former is zwitterionic, the latter moderately cationic, and both intrinsically cytocompatible. The photophysical characterizations show that the complexation to macromolecules does not hamper the Ru(phen)32+ ability to generate toxic singlet oxygen upon irradiation, and phosphorescence lifetimes and quantum yields are similar in all cases. All three compounds are internalized by HeLa cells and can induce cell death upon visible light irradiation. However, their relative PDT efficiency is different: the zwitterionic PhenISA endowed with the Ru-complex lowers the PDT efficiency of the free complex, while conversely, the cationic PhenAN boosts it. Flow cytometry demonstrates that the uptake efficiency of the three agents reflects the observed differences in PDT efficacy. Additionally, intracellular localization studies show that while [Ru(phen)2BAP](OTf)2 remains confined in vesicular structures, Ru-PhenISA localization is hard to determine due to the very low uptake efficiency. Very interestingly, instead, the cationic Ru-PhenAN accumulates inside the nucleus in all treated cells. Overall, the results indicate that the complexation of [Ru(phen)2BAP](OTf)2 with a cationic polyamidoamine to give the Ru-PhenAN complex is an excellent strategy to increase the Ru-complex cell uptake and, additionally, to achieve accumulation at the nuclear level. These unique features together make this compound an excellent photosensitizer with very high PDT efficiency.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Fotoquimioterapia , Poliaminas/farmacologia , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Tamanho da Partícula , Poliaminas/química , Rutênio/química , Células Tumorais Cultivadas
14.
Int J Mol Sci ; 20(16)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31404995

RESUMO

The enzyme vascular non-inflammatory molecule-1 (vanin 1) is highly expressed at gene and protein level in many organs, such as the liver, intestine, and kidney. Its major function is related to its pantetheinase activity; vanin 1 breaks down pantetheine in cysteamine and pantothenic acid, a precursor of coenzyme A. Indeed, its physiological role seems strictly related to coenzyme A metabolism, lipid metabolism, and energy production. In recent years, many studies have elucidated the role of vanin 1 under physiological conditions in relation to oxidative stress and inflammation. Vanin's enzymatic activity was found to be of key importance in certain diseases, either for its protective effect or as a sensitizer, depending on the diseased organ. In this review, we discuss the role of vanin 1 in the liver, kidney, intestine, and lung under physiological as well as pathophysiological conditions. Thus, we provide a more complete understanding and overview of its complex function and contribution to some specific pathologies.


Assuntos
Amidoidrolases/metabolismo , Estresse Oxidativo , Amidoidrolases/análise , Animais , Proteínas Ligadas por GPI/análise , Proteínas Ligadas por GPI/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Enteropatias/metabolismo , Enteropatias/fisiopatologia , Intestinos/fisiopatologia , Rim/metabolismo , Rim/fisiopatologia , Nefropatias/metabolismo , Nefropatias/fisiopatologia , Fígado/metabolismo , Fígado/fisiopatologia , Hepatopatias/metabolismo , Hepatopatias/fisiopatologia
15.
Ecotoxicol Environ Saf ; 123: 18-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26422775

RESUMO

Nano-sized polymers as polystyrene (PS) constitute one of the main challenges for marine ecosystems, since they can distribute along the whole water column affecting planktonic species and consequently disrupting the energy flow of marine ecosystems. Nowadays very little knowledge is available on the impact of nano-sized plastics on marine organisms. Therefore, the present study aims to evaluate the effects of 40nm anionic carboxylated (PS-COOH) and 50nm cationic amino (PS-NH2) polystyrene nanoparticles (PS NPs) on brine shrimp Artemia franciscana larvae. No signs of mortality were observed at 48h of exposure for both PS NPs at naplius stage but several sub-lethal effects were evident. PS-COOH (5-100µg/ml) resulted massively sequestered inside the gut lumen of larvae (48h) probably limiting food intake. Some of them were lately excreted as fecal pellets but not a full release was observed. Likewise, PS-NH2 (5-100µg/ml) accumulated in larvae (48h) but also adsorbed at the surface of sensorial antennules and appendages probably hampering larvae motility. In addition, larvae exposed to PS-NH2 undergo multiple molting events during 48h of exposure compared to controls. The activation of a defense mechanism based on a physiological process able to release toxic cationic NPs (PS-NH2) from the body can be hypothesized. The general observed accumulation of PS NPs within the gut during the 48h of exposure indicates a continuous bioavailability of nano-sized PS for planktonic species as well as a potential transfer along the trophic web. Therefore, nano-sized PS might be able to impair food uptake (feeding), behavior (motility) and physiology (multiple molting) of brine shrimp larvae with consequences not only at organism and population level but on the overall ecosystem based on the key role of zooplankton on marine food webs.


Assuntos
Artemia/efeitos dos fármacos , Nanopartículas/toxicidade , Poliestirenos/toxicidade , Animais , Artemia/metabolismo , Fenômenos Químicos , Larva/efeitos dos fármacos , Larva/metabolismo , Nanopartículas/química , Poliestirenos/química , Testes de Toxicidade Aguda , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Zooplâncton/efeitos dos fármacos , Zooplâncton/metabolismo
16.
Small ; 10(16): 3307-15, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-24737750

RESUMO

Nanoparticles in contact with cells and living organisms generate quite novel interactions at the interface between the nanoparticle surface and the surrounding biological environment. However, a detailed time resolved molecular level description of the evolving interactions as nanoparticles are internalized and trafficked within the cellular environment is still missing and will certainly be required for the emerging arena of nanoparticle-cell interactions to mature. In this paper promising methodologies to map out the time resolved nanoparticle-cell interactome for nanoparticle uptake are discussed. Thus silica coated magnetite nanoparticles are presented to cells and their magnetic properties used to isolate, in a time resolved manner, the organelles containing the nanoparticles. Characterization of the recovered fractions shows that different cell compartments are isolated at different times, in agreement with imaging results on nanoparticle intracellular location. Subsequently the internalized nanoparticles can be further isolated from the recovered organelles, allowing the study of the most tightly nanoparticle-bound biomolecules, analogous to the 'hard corona' that so far has mostly been characterized in extracellular environments. Preliminary data on the recovered nanoparticles suggest that significant portion of the original corona (derived from the serum in which particles are presented to the cells) is preserved as nanoparticles are trafficked through the cells.


Assuntos
Magnetismo , Nanopartículas , Organelas/metabolismo , Linhagem Celular Tumoral , Humanos , Microscopia Eletrônica de Transmissão
17.
Analyst ; 139(5): 923-30, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24195103

RESUMO

Nanoparticle properties, such as small size relative to large highly modifiable surface area, offer great promise for neuro-therapeutics and nanodiagnostics. A fundamental understanding and control of how nanoparticles interact with the blood-brain barrier (BBB) could enable major developments in nanomedical treatment of previously intractable neurological disorders, and help ensure that nanoparticles not intended to reach the brain do not cause adverse effects. Nanosafety is of utmost importance to this field. However, a distinct lack of knowledge exists regarding nanoparticle accumulation within the BBB and the biological effects this may induce on neighbouring cells of the Central Nervous System (CNS), particularly in the long-term. This study focussed on the exposure of an in vitro BBB model to model carboxylated polystyrene nanoparticles (PS COOH NPs), as these nanoparticles are well characterised for in vitro experimentation and have been reported as non-toxic in many biological settings. TEM imaging showed accumulation but not degradation of 100 nm PS COOH NPs within the lysosomes of the in vitro BBB over time. Cytokine secretion analysis from the in vitro BBB post 24 h 100 nm PS COOH NP exposure showed a low level of pro-inflammatory RANTES protein secretion compared to control. In contrast, 24 h exposure of the in vitro BBB endothelium to 100 nm PS COOH NPs in the presence of underlying astrocytes caused a significant increase in pro-survival signalling. In conclusion, the tantalising possibilities of nanomedicine must be balanced by cautious studies into the possible long-term toxicity caused by accumulation of known 'toxic' and 'non-toxic' nanoparticles, as general toxicity assays may be disguising significant signalling regulation during long-term accumulation.


Assuntos
Barreira Hematoencefálica/metabolismo , Citocinas/metabolismo , Nanopartículas/toxicidade , Comunicação Parácrina/fisiologia , Polímeros/toxicidade , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Comunicação Parácrina/efeitos dos fármacos
18.
Angew Chem Int Ed Engl ; 53(30): 7714-8, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24917379

RESUMO

Graphing graphene: Because the naming of graphene-based materials (GBMs) has led to confusion and inconsistency, a classification approach is necessary. Three physical-chemical properties of GBMs have been defined by the GRAPHENE Flagship Project of the European Union for the unequivocal classification of these materials (see grid).


Assuntos
Grafite/química , Nanoestruturas/química , Teste de Materiais , Nanotecnologia
19.
Curr Opin Biotechnol ; 87: 103101, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38461749

RESUMO

Upon administration, nanomedicines adsorb a corona of endogenous biomolecules on their surface, which can affect nanomedicine interactions with cells, targeting, and efficacy. While strategies to reduce protein binding are available, the high selectivity of the adsorbed corona is enabling novel applications, such as for biomarker discovery and rare protein identification. Additionally, the adsorbed molecules can promote interactions with specific cell receptors, thus conferring the nanomedicine new endogenous targeting capabilities. This has been reported for Onpattro, a lipid nanoparticle targeting the hepatocytes via apolipoproteins in its corona. Recently, selective organ-targeting (SORT) nanoparticles have been proposed, which exploit corona-mediated interactions to deliver nanoparticles outside the liver. Strategies for corona seeding and corona engineering are emerging to increase the selectivity of similar endogenous targeting mechanisms.


Assuntos
Nanomedicina , Coroa de Proteína , Nanomedicina/métodos , Humanos , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Nanopartículas/química , Animais
20.
Nat Nanotechnol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504023

RESUMO

Understanding how cells process nanoparticles is crucial to optimize nanomedicine efficacy. However, characterizing cellular pathways is challenging, especially if non-canonical mechanisms are involved. In this Article a genome-wide forward genetic screening based on insertional mutagenesis is applied to discover receptors and proteins involved in the intracellular accumulation (uptake and intracellular processing) of silica nanoparticles. The nanoparticles are covered by a human serum corona known to target the low-density lipoprotein receptor (LDLR). By sorting cells with reduced nanoparticle accumulation and deep sequencing after each sorting, 80 enriched genes are identified. We find that, as well as LDLR, the scavenger receptor SCARB1 also mediates nanoparticle accumulation. Additionally, heparan sulfate acts as a specific nanoparticle receptor, and its role varies depending on cell and nanoparticle type. Furthermore, some of the identified targets affect nanoparticle trafficking to the lysosomes. These results show the potential of genetic screening to characterize nanoparticle pathways. Additionally, they indicate that corona-coated nanoparticles are internalized via multiple receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA