Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903092

RESUMO

A systematic microstructural characterization of alumina joined to Hastelloy C22® by means of a commercial active TiZrCuNi alloy, named BTi-5, as a filler metal is reviewed and discussed. The contact angles of the liquid BTi-5 alloy measured at 900°C for the two materials to be joined are 12° and 47° for alumina and Hastelloy C22® after 5 min, respectively, thus demonstrating good wetting and adhesion at 900 °C with very little interfacial reactivity or interdiffusion. The thermomechanical stresses caused by the difference in the coefficient of thermal expansion (CTE) between the Hastelloy C22® superalloy (≈15.3 × 10-6 K-1) and its alumina counterpart (≈8 × 10-6 K-1) were the key issues that had to be resolved to avoid failure in this joint. In this work, a circular configuration of the Hastelloy C22®/alumina joint was specifically designed to produce a feedthrough for sodium-based liquid metal batteries operating at high temperatures (up to 600 °C). In this configuration, adhesion between the metal and ceramic components was enhanced after cooling by compressive forces created on the joined area due to the difference in CTE between the two materials.

2.
Sci Rep ; 12(1): 2526, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169216

RESUMO

In this study, authors explore the application of modelling and additive layer manufacturing (ALM) for creating and testing materials with interlocking structures aimed to reduce the stress concentration along the edges of a typical lap joint. The effectiveness of this approach is discussed by means of modelling and experimental validation of joints with interlocking structures obtained by ALM. Considering the achieved results, ALM of interlocking structures constitutes an interesting alternative or complement to traditional joining processes, as it may help to minimize stress mismatches in the joining region. It may also prevent the use of adhesive or joining post processes, because the joint is created together with the joined components.

3.
Waste Manag ; 29(3): 1041-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18845429

RESUMO

Bottom ashes from a north Italian municipal solid waste incinerator (MSWI) were vitrified at 1450 degrees C without adding any vitrifying agent, then ground and sieved to different granulometry (ranging from 50 microm to 20mm), and used as filler, sand, or aggregate for concrete. Samples were characterized via slump tests (UNI 9418), alkali-silica reactivity (UNI 8520/22 and ASTM C 298), and compression strength tests (UNI 6132, 6132/72, 6686/72), and compared to reference samples obtained without vitrified bottom ashes (VBA). Our results show that vitrified bottom ashes are unsuitable as a sand substitute; however, concrete containing up to 20 wt.% of VBA filler used as a substitute for cement and up to 75 vol.% of VBA as a substitute for natural aggregate retains the same mechanical properties as reference samples. Alkali-silica or other detrimental reactions were not observed in VBA-containing concrete samples after a period of two years. The results of this work demonstrate that vitrified bottom ashes from MSWI can be used instead of natural aggregates in mortar and concrete production.


Assuntos
Carbono/química , Materiais de Construção , Incineração , Teste de Materiais , Material Particulado/química , Eliminação de Resíduos , Cidades , Cinza de Carvão , Força Compressiva , Filtração , Itália , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Dióxido de Silício , Fatores de Tempo
4.
Materials (Basel) ; 12(3)2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30691069

RESUMO

Optical fiber sensors (OFSs), which rely on evanescent wave sensing for the early detection of the diffusion of water and hydrochloric acid through glass fiber-reinforced polymers (GFRPs), have been developed and tested. Epoxy and GFRP specimens, in which these sensors were embedded, were subjected to tests in artificial sea water and hydrochloric acid. The sensors were able to detect the diffusion of chemicals through the epoxy and GFRP samples on the basis of a drop in the reflected signal from the tip of the optical sensor probe. Water and hydrochloric acid diffusion coefficients were calculated from gravimetric measurements and compared with the experimental response of the OFSs. Furthermore, mechanical tests were carried out to assess the influence of the sensors on the structural integrity of the GFRP specimens.

5.
Materials (Basel) ; 12(4)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769842

RESUMO

Two commercial hybrid coatings, cured at temperatures lower than 300 °C, were successfully used to protect magnesium silicide stannide and zinc-doped tetrahedrite thermoelectrics. The oxidation rate of magnesium silicide at 500 °C in air was substantially reduced after 120 h with the application of the solvent-based coating and a slight increase in power factor was observed. The water-based coating was effective in preventing an increase in electrical resistivity for a coated tethtraedrite, preserving its power factor after 48 h at 350 °C.

6.
Materials (Basel) ; 12(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669276

RESUMO

To provide a reliable integration of components within a solid oxide electrolysis cell stack, it is fundamental to evaluate the mechanical properties of the glass⁻ceramic sealing materials, as well as the stability of the metal⁻glass⁻ceramic interface. In this work, the mechanical behavior of two previously developed glass⁻ceramic sealants joined to Crofer22APU steel is investigated at room temperature, 650 °C, and 850 °C under shear load. The mechanical properties of both the glass⁻ceramics showed temperature dependence. The shear strength of Crofer22APU/glass⁻ceramic/Crofer22APU joints ranged from 14.1 MPa (20 °C) to 1.8 MPa (850 °C). The elastic modulus of both glass⁻ceramics also reduced with temperature. The volume fraction of the crystalline phases in the glass⁻ceramics was the key factor for controlling the mechanical properties and fracture, especially above the glass-transition temperature.

7.
Materials (Basel) ; 11(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563283

RESUMO

Over the past few years, significant progress towards implementation of environmentally sustainable and cost-effective thermoelectric power generation has been made. However, the reliability and high-temperature stability challenges of incorporating thermoelectric materials into modules still represent a key bottleneck. Here, we demonstrate an implementation of the Solid-Liquid Interdiffusion technique used for bonding Mmy(Fe,Co)4Sb12 p-type thermoelectric material to metallic interconnect using a novel aluminium⁻nickel multi-layered system. It was found that the diffusion reaction-controlled process leads to the formation of two distinct intermetallic compounds (IMCs), Al3Ni and Al3Ni2, with a theoretical melting point higher than the initial bonding temperature. Different manufacturing parameters have also been investigated and their influence on electrical, mechanical and microstructural features of bonded components are reported here. The resulting electrical contact resistances and apparent shear strengths for components with residual aluminium were measured to be (2.8 ± 0.4) × 10-5 Ω∙cm² and 5.1 ± 0.5 MPa and with aluminium completely transformed into Al3Ni and Al3Ni2 IMCs were (4.8 ± 0.3) × 10-5 Ω∙cm² and 4.5 ± 0.5 MPa respectively. The behaviour and microstructural changes in the joining material have been evaluated through isothermal annealing at hot-leg working temperature to investigate the stability and evolution of the contact.

8.
Materials (Basel) ; 11(9)2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30205511

RESUMO

Alumina dispersion-strengthened copper, Glidcop, is used widely in high-heat-load ultra-high-vacuum components for synchrotron light sources (absorbers), accelerator components (beam intercepting devices), and in nuclear power plants. Glidcop has similar thermal and electrical properties to oxygen free electrical (OFE) copper, but has superior mechanical properties, thus making it a feasible structural material; its yield and ultimate tensile strength are equivalent to those of mild-carbon steel. The purpose of this work has been to develop a brazing technique to join Glidcop to Mo, using a commercial Cu-based alloy. The effects of the excessive diffusion of the braze along the grain boundaries on the interfacial chemistry and joint microstructure, as well as on the mechanical performance of the brazed joints, has been investigated. In order to prevent the diffusion of the braze into the Glidcop alloy, a copper barrier layer has been deposited on Glidcop by means of RF-sputtering.

9.
Waste Manag ; 33(9): 1906-17, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23790672

RESUMO

Fly and bottom ashes are the main by-products arising from the combustion of solid biomass. Since the production of energy from this source is increasing, the processing and disposal of the resulting ashes has become an environmental and economic issue. Such ashes are of interest as a construction material because they are composed of very fine particles similar to fillers normally employed in bituminous and cementitious mixtures. This research investigates the potential use of ash from biomass as filler in bituminous mixtures. The morphological, physical and chemical characteristics of 21 different ashes and two traditional fillers (calcium carbonate and "recovered" plant filler) were evaluated and discussed. Leaching tests, performed in order to quantify the release of pollutants, revealed that five ashes do not comply with the Italian environmental re-use limits. Experimental results show a wide range of values for almost all the investigated properties and a low correlation with biomass type in terms of origin and chemical composition. Furthermore, sieving and milling processes were found to improve the properties of the raw material in terms of grading and sample porosity. The effectiveness of these treatments and the low content of organic matter and harmful fines suggest that most of the biomass ashes investigated may be regarded as potential replacements for natural filler in bituminous mixtures.


Assuntos
Cinza de Carvão/química , Materiais de Construção , Gerenciamento de Resíduos/métodos , Biomassa , Concentração de Íons de Hidrogênio , Itália , Azul de Metileno/química , Tamanho da Partícula , Solubilidade , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA