Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(23): e2200794119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35658080

RESUMO

During the late phase of HIV type 1 (HIV-1) infection cycle, the virally encoded Gag polyproteins are targeted to the inner leaflet of the plasma membrane (PM) for assembly, formation of immature particles, and virus release. Gag binding to the PM is mediated by interactions of the N-terminally myristoylated matrix (myrMA) domain with phosphatidylinositol 4,5-bisphosphate. Formation of a myrMA lattice on the PM is an obligatory step for the assembly of immature HIV-1 particles and envelope (Env) incorporation. Atomic details of the myrMA lattice and how it mediates Env incorporation are lacking. Herein, we present the X-ray structure of myrMA at 2.15 Å. The myrMA lattice is arranged as a hexamer of trimers with a central hole, thought to accommodate the C-terminal tail of Env to promote incorporation into virions. The trimer­trimer interactions in the lattice are mediated by the N-terminal loop of one myrMA molecule and α-helices I­II, as well as the 310 helix of a myrMA molecule from an adjacent trimer. We provide evidence that substitution of MA residues Leu13 and Leu31, previously shown to have adverse effects on Env incorporation, induced a conformational change in myrMA, which may destabilize the trimer­trimer interactions within the lattice. We also show that PI(4,5)P2 is capable of binding to alternating sites on MA, consistent with an MA­membrane binding mechanism during assembly of the immature particle and upon maturation. Altogether, these findings advance our understanding of a key mechanism in HIV-1 particle assembly.


Assuntos
HIV-1 , Membrana Celular/metabolismo , HIV-1/metabolismo , Domínios Proteicos , Vírion/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
2.
J Biol Chem ; 294(49): 18600-18612, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31640987

RESUMO

During the late phase of the HIV-1 replication cycle, the viral Gag polyproteins are targeted to the plasma membrane for assembly. The Gag-membrane interaction is mediated by binding of Gag's N-terminal myristoylated matrix (MA) domain to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). The viral envelope (Env) glycoprotein is then recruited to the assembly sites and incorporated into budding particles. Evidence suggests that Env incorporation is mediated by interactions between Gag's MA domain and the cytoplasmic tail of the gp41 subunit of Env (gp41CT). MA trimerization appears to be an obligatory step for this interaction. Insufficient production of a recombinant MA trimer and unavailability of a biologically relevant membrane system have been barriers to detailed structural and biophysical characterization of the putative MA-gp41CT-membrane interactions. Here, we engineered a stable recombinant HIV-1 MA trimer construct by fusing a foldon domain (FD) of phage T4 fibritin to the MA C terminus. Results from NMR experiments confirmed that the FD attachment does not adversely alter the MA structure. Employing hydrogen-deuterium exchange MS, we identified an MA-MA interface in the MA trimer that is implicated in Gag assembly and Env incorporation. Utilizing lipid nanodiscs as a membrane mimetic, we show that the MA trimer binds to membranes 30-fold tighter than does the MA monomer and that incorporation of PI(4,5)P2 and phosphatidylserine enhances the binding of MA to nanodiscs. These findings advance our understanding of a fundamental mechanism in HIV-1 assembly and provide a template for investigating the interaction of MA with gp41CT.


Assuntos
HIV-1/metabolismo , Montagem de Vírus/fisiologia , Calorimetria , Membrana Celular/metabolismo , Produtos do Gene gag/química , Produtos do Gene gag/metabolismo , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Espectroscopia de Ressonância Magnética , Fosfatidilserinas/metabolismo , Ligação Proteica
3.
J Biol Chem ; 289(12): 8697-705, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24500712

RESUMO

Subcellular distribution of calmodulin (CaM) in human immunodeficiency virus type-1 (HIV-1)-infected cells is distinct from that observed in uninfected cells. CaM co-localizes and interacts with the HIV-1 Gag protein in the cytosol of infected cells. Although it has been shown that binding of Gag to CaM is mediated by the matrix (MA) domain, the structural details of this interaction are not known. We have recently shown that binding of CaM to MA induces a conformational change that triggers myristate exposure, and that the CaM-binding domain of MA is confined to a region spanning residues 8-43 (MA-(8-43)). Here, we present the NMR structure of CaM bound to MA-(8-43). Our data revealed that MA-(8-43), which contains a novel CaM-binding motif, binds to CaM in an antiparallel mode with the N-terminal helix (α1) anchored to the CaM C-terminal lobe, and the C-terminal helix (α2) of MA-(8-43) bound to the N-terminal lobe of CaM. The CaM protein preserves a semiextended conformation. Binding of MA-(8-43) to CaM is mediated by numerous hydrophobic interactions and stabilized by favorable electrostatic contacts. Our structural data are consistent with the findings that CaM induces unfolding of the MA protein to have access to helices α1 and α2. It is noteworthy that several MA residues involved in CaM binding have been previously implicated in membrane binding, envelope incorporation, and particle production. The present findings may ultimately help in identification of the functional role of CaM in HIV-1 replication.


Assuntos
Calmodulina/química , Calmodulina/metabolismo , Antígenos HIV/química , Antígenos HIV/metabolismo , HIV-1/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/química , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
4.
J Biol Chem ; 288(30): 21898-908, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23760276

RESUMO

The extrinsic apoptotic pathway is initiated by cell surface death receptors such as Fas. Engagement of Fas by Fas ligand triggers a conformational change that allows Fas to interact with adaptor protein Fas-associated death domain (FADD) via the death domain, which recruits downstream signaling proteins to form the death-inducing signaling complex (DISC). Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells, suggesting a novel role of CaM in Fas-mediated signaling. CaM antagonists induce apoptosis through a Fas-related mechanism in cholangiocarcinoma and other cancer cell lines possibly by inhibiting Fas-CaM interactions. The structural determinants of Fas-CaM interaction and the underlying molecular mechanisms of inhibition, however, are unknown. Here we employed NMR and biophysical techniques to elucidate these mechanisms. Our data show that CaM binds to the death domain of Fas (FasDD) with an apparent dissociation constant (Kd) of ~2 µM and 2:1 CaM:FasDD stoichiometry. The interactions between FasDD and CaM are endothermic and entropically driven, suggesting that hydrophobic contacts are critical for binding. We also show that both the N- and C-terminal lobes of CaM are important for binding. NMR and surface plasmon resonance data show that three CaM antagonists (N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide, tamoxifen, and trifluoperazine) greatly inhibit Fas-CaM interactions by blocking the Fas-binding site on CaM. Our findings provide the first structural evidence for Fas-CaM interactions and mechanism of inhibition and provide new insight into the molecular basis for a novel role of CaM in regulating Fas-mediated apoptosis.


Assuntos
Calmodulina/química , Proteína de Domínio de Morte Associada a Fas/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Animais , Fenômenos Biofísicos , Calmodulina/genética , Calmodulina/metabolismo , Calorimetria , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Ligação Proteica/efeitos dos fármacos , Ratos , Proteínas Recombinantes/metabolismo , Sulfonamidas/farmacologia , Ressonância de Plasmônio de Superfície , Tamoxifeno/farmacologia , Termodinâmica , Trifluoperazina/farmacologia
5.
J Biol Chem ; 286(38): 33533-43, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21799007

RESUMO

Subcellular distribution of Calmodulin (CaM) in human immunodeficiency virus type-1 (HIV-1)-infected cells is distinct from that observed in uninfected cells. CaM has been shown to interact and co-localize with the HIV-1 Gag protein in infected cells. However, the precise molecular mechanism of this interaction is not known. Binding of Gag to CaM is dependent on calcium and is mediated by the N-terminal-myristoylated matrix (myr(+)MA) domain. We have recently shown that CaM binding induces a conformational change in the MA protein, triggering exposure of the myristate group. To unravel the molecular mechanism of CaM-MA interaction and to identify the minimal CaM binding domain of MA, we devised multiple approaches utilizing NMR, biochemical, and biophysical methods. Short peptides derived from the MA protein have been examined. Our data revealed that whereas peptides spanning residues 11-28 (MA-(11-28)) and 31-46 (MA-(31-46)) appear to bind preferentially to the C-terminal lobe of CaM, a peptide comprising residues 11-46 (MA-(11-46)) appears to engage both domains of CaM. Limited proteolysis data conducted on the MA-CaM complex yielded a MA peptide (residues 8-43) that is protected by CaM and resistant to proteolysis. MA-(8-43) binds to CaM with a very high affinity (dissociation constant = 25 nm) and in a manner that is similar to that observed for the full-length MA protein. The present findings provide new insights on how MA interacts with CaM that may ultimately help in identification of the functional role of CaM-Gag interactions in the HIV replication cycle.


Assuntos
Fenômenos Bioquímicos , Fenômenos Biofísicos , Calmodulina/metabolismo , Antígenos HIV/química , Antígenos HIV/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Animais , Eletroforese em Gel de Poliacrilamida , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Termodinâmica , Termolisina/metabolismo
6.
J Mol Biol ; 431(7): 1440-1459, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30753871

RESUMO

Calcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine protein kinase that transmits calcium signals in various cellular processes. CaMKII is activated by calcium-bound calmodulin (Ca2+/CaM) through a direct binding mechanism involving a regulatory C-terminal α-helix in CaMKII. The Ca2+/CaM binding triggers transphosphorylation of critical threonine residues proximal to the CaM-binding site leading to the autoactivated state of CaMKII. The demonstration of its critical roles in pathophysiological processes has elevated CaMKII to a key target in the management of numerous diseases. The molecule KN-93 is the most widely used inhibitor for studying the cellular and in vivo functions of CaMKII. It is widely believed that KN-93 binds directly to CaMKII, thus preventing kinase activation by competing with Ca2+/CaM. Herein, we employed surface plasmon resonance, NMR, and isothermal titration calorimetry to characterize this presumed interaction. Our results revealed that KN-93 binds directly to Ca2+/CaM and not to CaMKII. This binding would disrupt the ability of Ca2+/CaM to interact with CaMKII, effectively inhibiting CaMKII activation. Our findings also indicated that KN-93 can specifically compete with a CaMKIIδ-derived peptide for binding to Ca2+/CaM. As indicated by the surface plasmon resonance and isothermal titration calorimetry data, apparently at least two KN-93 molecules can bind to Ca2+/CaM. Our findings provide new insight into how in vitro and in vivo data obtained with KN-93 should be interpreted. They further suggest that other Ca2+/CaM-dependent, non-CaMKII activities should be considered in KN-93-based mechanism-of-action studies and drug discovery efforts.


Assuntos
Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Cálcio/metabolismo , Calmodulina/metabolismo , Sulfonamidas/farmacologia , Benzilaminas/metabolismo , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calorimetria , Humanos , Fosforilação , Sulfonamidas/metabolismo , Ressonância de Plasmônio de Superfície
7.
Structure ; 25(11): 1708-1718.e5, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29056482

RESUMO

The cytoplasmic tail of gp41 (gp41CT) remains the last HIV-1 domain with an unknown structure. It plays important roles in HIV-1 replication such as mediating envelope (Env) intracellular trafficking and incorporation into assembling virions, mechanisms of which are poorly understood. Here, we present the solution structure of gp41CT in a micellar environment and characterize its interaction with the membrane. We show that the N-terminal 45 residues are unstructured and not associated with the membrane. However, the C-terminal 105 residues form three membrane-bound amphipathic α helices with distinctive structural features such as variable degree of membrane penetration, hydrophobic and basic surfaces, clusters of aromatic residues, and a network of cation-π interactions. This work fills a major gap by providing the structure of the last segment of HIV-1 Env, which will provide insights into the mechanisms of Gag-mediated Env incorporation as well as the overall Env mobility and conformation on the virion surface.


Assuntos
Proteína gp41 do Envelope de HIV/química , HIV-1/química , Bicamadas Lipídicas/química , Vírion/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Micelas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Éteres Fosfolipídicos/química , Éteres Fosfolipídicos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Termodinâmica
8.
PLoS One ; 11(1): e0146493, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26735300

RESUMO

The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD) and that of the Fas-associated protein (FADD) interact to form the core of the death-inducing signaling complex (DISC), a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD). However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR), biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas-mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209-239 (Fas-Pep1) and 251-288 (Fas-Pep2) constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD-CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling pathway.


Assuntos
Calmodulina/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Receptor fas/metabolismo , Sequência de Aminoácidos , Apoptose , Sítios de Ligação , Calmodulina/química , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Dicroísmo Circular , Proteína de Domínio de Morte Associada a Fas/química , Proteína de Domínio de Morte Associada a Fas/genética , Humanos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/análise , Ligação Proteica , Estrutura Terciária de Proteína , Proteólise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Transdução de Sinais , Espectrometria de Massas em Tandem , Termodinâmica , Receptor fas/química
9.
Front Microbiol ; 3: 55, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363329

RESUMO

Human immunodeficiency virus type-1 (HIV-1) encodes a polypeptide called Gag that is able to form virus-like particles in vitro in the absence of any cellular or viral constituents. During the late phase of the HIV-1 infection, Gag polyproteins are transported to the plasma membrane (PM) for assembly. In the past two decades, in vivo, in vitro, and structural studies have shown that Gag trafficking and targeting to the PM are orchestrated events that are dependent on multiple factors including cellular proteins and specific membrane lipids. The matrix (MA) domain of Gag has been the focus of these studies as it appears to be engaged in multiple intracellular interactions that are suggested to be critical for virus assembly and replication. The interaction between Gag and the PM is perhaps the most understood. It is now established that the ultimate localization of Gag on punctate sites on the PM is mediated by specific interactions between the MA domain of Gag and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P(2)], a minor lipid localized on the inner leaflet of the PM. Structure-based studies revealed that binding of PI(4,5)P(2) to MA induces minor conformational changes, leading to exposure of the myristyl (myr) group. Exposure of the myr group is also triggered by binding of calmodulin, enhanced by factors that promote protein self-association like the capsid domain of Gag, and is modulated by pH. Despite the steady progress in defining both the viral and cellular determinants of retroviral assembly and release, Gag's intracellular interactions and trafficking to its assembly sites in the infected cell are poorly understood. In this review, we summarize the current understanding of the structural and functional role of MA in HIV replication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA