Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plant Physiol ; 194(1): 209-228, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37073485

RESUMO

Expansins facilitate cell expansion by mediating pH-dependent cell wall (CW) loosening. However, the role of expansins in controlling CW biomechanical properties in specific tissues and organs remains elusive. We monitored hormonal responsiveness and spatial specificity of expression and localization of expansins predicted to be the direct targets of cytokinin signaling in Arabidopsis (Arabidopsis thaliana). We found EXPANSIN1 (EXPA1) homogenously distributed throughout the CW of columella/lateral root cap, while EXPA10 and EXPA14 localized predominantly at 3-cell boundaries in the epidermis/cortex in various root zones. EXPA15 revealed cell-type-specific combination of homogenous vs. 3-cell boundaries localization. By comparing Brillouin frequency shift and AFM-measured Young's modulus, we demonstrated Brillouin light scattering (BLS) as a tool suitable for non-invasive in vivo quantitative assessment of CW viscoelasticity. Using both BLS and AFM, we showed that EXPA1 overexpression upregulated CW stiffness in the root transition zone (TZ). The dexamethasone-controlled EXPA1 overexpression induced fast changes in the transcription of numerous CW-associated genes, including several EXPAs and XYLOGLUCAN:XYLOGLUCOSYL TRANSFERASEs (XTHs), and associated with rapid pectin methylesterification determined by in situ Fourier-transform infrared spectroscopy in the root TZ. The EXPA1-induced CW remodeling is associated with the shortening of the root apical meristem, leading to root growth arrest. Based on our results, we propose that expansins control root growth by a delicate orchestration of CW biomechanical properties, possibly regulating both CW loosening and CW remodeling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fenômenos Biomecânicos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema/metabolismo , Hormônios/metabolismo , Parede Celular/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
J Exp Bot ; 75(1): 45-59, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37715992

RESUMO

The endoplasmic reticulum (ER) is a dynamic organelle that is amenable to major restructuring. Introduction of recombinant ER-membrane-resident proteins that form homo oligomers is a known method of inducing ER proliferation: interaction of the proteins with each other alters the local structure of the ER network, leading to the formation large aggregations of expanded ER, sometimes leading to the formation of organized smooth endoplasmic reticulum (OSER). However, these membrane structures formed by ER proliferation are poorly characterized and this hampers their potential development for plant synthetic biology. Here, we characterize a range of ER-derived membranous compartments in tobacco and show how the nature of the polyproteins introduced into the ER membrane affect the morphology of the final compartment. We show that a cytosol-facing oligomerization domain is an essential component for compartment formation. Using fluorescence recovery after photobleaching, we demonstrate that although the compartment retains a connection to the ER, a diffusional barrier exists to both the ER and the cytosol associated with the compartment. Using quantitative image analysis, we also show that the presence of the compartment does not disrupt the rest of the ER network. Moreover, we demonstrate that it is possible to recruit a heterologous, bacterial enzyme to the compartment, and for the enzyme to accumulate to high levels. Finally, transgenic Arabidopsis constitutively expressing the compartment-forming polyproteins grew and developed normally under standard conditions.


Assuntos
Arabidopsis , Poliproteínas , Poliproteínas/análise , Poliproteínas/metabolismo , Proteínas de Membrana/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Arabidopsis/metabolismo
3.
BMC Plant Biol ; 21(1): 461, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627147

RESUMO

Inducible systems for transgene expression activated by a chemical inducer or an inducer of non-plant origin are desirable tools for both basic plant research and biotechnology. Although, the technology has been widely exploited in dicotyledonous model plants such as Arabidopsis, it has not been optimised for use with the monocotyledonous model species, namely rice. We have adapted the dexamethasone-inducible pOp6/LhGR system for rice and the results indicated that it is fast, sensitive and tightly regulated, with high levels of induction that remain stable over several generations. Most importantly, we have shown that the system does not cause negative growth defects in vitro or in soil grown plants. Interestingly in the process of testing, we found that another steroid, triamcinolone acetonide, is a more potent inducer in rice than dexamethasone. We present serious considerations for the construct design to avoid undesirable effects caused by the system in plants, leakiness and possible silencing, as well as simple steps to maximize translation efficiency of a gene of interest. Finally, we compare the performance of the pOp6/LhGR system with other chemically inducible systems tested in rice in terms of the properties of an ideal inducible system.


Assuntos
Dexametasona/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/genética , Oryza/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Genes de Plantas , Transgenes
4.
Curr Top Microbiol Immunol ; 425: 167-186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32418035

RESUMO

Glycosylphosphatidylinositol (GPI) anchored proteins are a class of proteins attached to the extracellular leaflet of the plasma membrane via a post-translational modification, the glycolipid anchor. GPI anchored proteins are expressed in all eukaryotes, from fungi to plants and animals. They display very diverse functions ranging from enzymatic activity, signaling, cell adhesion, cell wall metabolism, and immune response. In this review, we investigated for the first time an exhaustive list of all the GPI anchored proteins present in the Aspergillus fumigatus genome. An A. fumigatus mutant library of all the genes that encode in silico identified GPI anchored proteins has been constructed and the phenotypic analysis of all these mutants has been characterized including their growth, conidial viability or morphology, adhesion and the ability to form biofilms. We showed the presence of different fungal categories of GPI anchored proteins in the A. fumigatus genome associated to their role in cell wall remodeling, adhesion, and biofilm formation.


Assuntos
Aspergillus fumigatus/citologia , Aspergillus fumigatus/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Morfogênese , Animais , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Proteínas Fúngicas/genética
5.
Cell Microbiol ; 19(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27568483

RESUMO

The fungal wall is pivotal for cell shape and function, and in interfacial protection during host infection and environmental challenge. Here, we provide the first description of the carbohydrate composition and structure of the cell wall of the rice blast fungus Magnaporthe oryzae. We focus on the family of glucan elongation proteins (Gels) and characterize five putative ß-1,3-glucan glucanosyltransferases that each carry the Glycoside Hydrolase 72 signature. We generated targeted deletion mutants of all Gel isoforms, that is, the GH72+ , which carry a putative carbohydrate-binding module, and the GH72- Gels, without this motif. We reveal that M. oryzae GH72+ GELs are expressed in spores and during both infective and vegetative growth, but each individual Gel enzymes are dispensable for pathogenicity. Further, we demonstrated that a Δgel1Δgel3Δgel4 null mutant has a modified cell wall in which 1,3-glucans have a higher degree of polymerization and are less branched than the wild-type strain. The mutant showed significant differences in global patterns of gene expression, a hyper-branching phenotype and no sporulation, and thus was unable to cause rice blast lesions (except via wounded tissues). We conclude that Gel proteins play significant roles in structural modification of the fungal cell wall during appressorium-mediated plant infection.


Assuntos
Parede Celular/química , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Magnaporthe/enzimologia , Magnaporthe/metabolismo , beta-Glucanas/análise , Deleção de Genes , Glucana Endo-1,3-beta-D-Glucosidase/genética , Magnaporthe/genética , Magnaporthe/patogenicidade , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteoglicanas , Esporos Fúngicos/enzimologia , Esporos Fúngicos/metabolismo
6.
New Phytol ; 201(2): 556-573, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24117971

RESUMO

Plants respond to pathogen attack via a rapid burst of reactive oxygen species (ROS). However, ROS are also produced by fungal metabolism and are required for the development of infection structures in Magnaporthe oryzae. To obtain a better understanding of redox regulation in M. oryzae, we measured the amount and redox potential of glutathione (E(GSH)), as the major cytoplasmic anti-oxidant, the rates of ROS production, and mitochondrial activity using multi-channel four-dimensional (x,y,z,t) confocal imaging of Grx1-roGFP2 and fluorescent reporters during spore germination, appressorium formation and infection. High levels of mitochondrial activity and ROS were localized to the growing germ tube and appressorium, but E(GSH) was highly reduced and tightly regulated during development. Furthermore, germlings were extremely resistant to external H2O2 exposure ex planta. EGSH remained highly reduced during successful infection of the susceptible rice cultivar CO39. By contrast, there was a dramatic reduction in the infection of resistant (IR68) rice, but the sparse hyphae that did form also maintained a similar reduced E(GSH). We conclude that M. oryzae has a robust anti-oxidant defence system and maintains tight control of EGSH despite substantial oxidative challenge. Furthermore, the magnitude of the host oxidative burst alone does not stress the pathogen sufficiently to prevent infection in this pathosystem.


Assuntos
Antioxidantes/metabolismo , Glutationa/metabolismo , Magnaporthe/metabolismo , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Oryza/microbiologia , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
7.
New Phytol ; 197(1): 207-222, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23072575

RESUMO

Plant-derived nitric oxide (NO) triggers defence, priming the onset of the hypersensitive response and restricting pathogen ingress during incompatibility. However, little is known about the role of pathogen-produced NO during pre-infection development and infection. We sought evidence for NO production by the rice blast fungus during early infection. NO production was measured using fluorescence of DAR-4M and the role of NO assessed using NO scavengers. The synthesis of NO was investigated by targeted knockout of genes potentially involved in NO synthesis, including nitric oxide synthase-like genes (NOL2 and NOL3) and nitrate (NIA1) and nitrite reductase (NII1), generating single and double Δnia1Δnii1, Δnia1Δnol3, and Δnol2Δnol3 mutants. We demonstrate that Magnaporthe oryzae generates NO during germination and in early development. Removal of NO delays germling development and reduces disease lesion numbers. NO is not generated by the candidate proteins tested, nor by other arginine-dependent NO systems, by polyamine oxidase activity or non-enzymatically by low pH. Furthermore, we show that, while NIA1 and NII1 are essential for nitrate assimilation, NIA1, NII1, NOL2 and NOL3 are all dispensable for pathogenicity. Development of M. oryzae and initiation of infection are critically dependent on fungal NO synthesis, but its mode of generation remains obscure.


Assuntos
Genes Fúngicos , Magnaporthe/patogenicidade , Óxido Nítrico/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Ativação Enzimática , Fluorescência , Sequestradores de Radicais Livres/metabolismo , Técnicas de Inativação de Genes , Hordeum/metabolismo , Hordeum/microbiologia , Interações Hospedeiro-Patógeno , Concentração de Íons de Hidrogênio , Magnaporthe/genética , Magnaporthe/metabolismo , Cadeias de Markov , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Oryza/metabolismo , Rodaminas/metabolismo , Transdução de Sinais , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo
8.
J Fungi (Basel) ; 9(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36836370

RESUMO

GPI-anchored proteins display very diverse biological (biochemical and immunological) functions. An in silico analysis has revealed that the genome of Aspergillus fumigatus contains 86 genes coding for putative GPI-anchored proteins (GPI-APs). Past research has demonstrated the involvement of GPI-APs in cell wall remodeling, virulence, and adhesion. We analyzed a new GPI-anchored protein called SwgA. We showed that this protein is mainly present in the Clavati of Aspergillus and is absent from yeasts and other molds. The protein, localized in the membrane of A. fumigatus, is involved in germination, growth, and morphogenesis, and is associated with nitrogen metabolism and thermosensitivity. swgA is controlled by the nitrogen regulator AreA. This current study indicates that GPI-APs have more general functions in fungal metabolism than cell wall biosynthesis.

9.
Quant Plant Biol ; 3: e11, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37077967

RESUMO

Biomechanical properties of the cell wall (CW) are important for many developmental and adaptive responses in plants. Expansins were shown to mediate pH-dependent CW enlargement via a process called CW loosening. Here, we provide a brief overview of expansin occurrence in plant and non-plant species, their structure and mode of action including the role of hormone-regulated CW acidification in the control of expansin activity. We depict the historical as well as recent CW models, discuss the role of expansins in the CW biomechanics and address the developmental importance of expansin-regulated CW loosening in cell elongation and new primordia formation. We summarise the data published so far on the role of expansins in the abiotic stress response as well as the rather scarce evidence and hypotheses on the possible mechanisms underlying expansin-mediated abiotic stress resistance. Finally, we wrap it up by highlighting possible future directions in expansin research.

10.
J Cell Sci ; 122(Pt 20): 3749-58, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19789181

RESUMO

GTPases of the Rab1 subclass are essential for membrane traffic between the endoplasmic reticulum (ER) and Golgi complex in animals, fungi and plants. Rab1-related proteins in higher plants are unusual because sequence comparisons divide them into two putative subclasses, Rab-D1 and Rab-D2, that are conserved in monocots and dicots. We tested the hypothesis that the Rab-D1 and Rab-D2 proteins of Arabidopsis represent functionally distinct groups. RAB-D1 and RAB-D2a each targeted fluorescent proteins to the same punctate structures associated with the Golgi stacks and trans-Golgi-network. Dominant-inhibitory N121I mutants of each protein inhibited traffic of diverse cargo proteins at the ER but they appeared to act via distinct biochemical pathways as biosynthetic traffic in cells expressing either of the N121I mutants could be restored by coexpressing the wild-type form of the same subclass but not the other subclass. The same interaction was observed in transgenic seedlings expressing RAB-D1 [N121I]. Insertional mutants confirmed that the three Arabidopsis Rab-D2 genes were extensively redundant and collectively performed an essential function that could not be provided by RAB-D1, which was non-essential. However, plants lacking RAB-D1, RAB-D2b and RAB-D2c were short and bushy with low fertility, indicating that the Rab-D1 and Rab-D2 subclasses have overlapping functions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Via Secretória , Proteínas rab de Ligação ao GTP/metabolismo , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/enzimologia , Retículo Endoplasmático/enzimologia , Genes Dominantes , Mutagênese Insercional , Fenótipo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Rede trans-Golgi/enzimologia
11.
Curr Protoc Plant Biol ; 4(2): e20089, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30860661

RESUMO

Use of chemically inducible systems for transgene expression is a crucial requirement for modern plant biology research, as it allows (1) expression of transgenes that compromise plant viability or fertility when constitutively expressed and (2) spatiotemporal control of transgene expression levels. We describe the stringently regulated and highly responsive dexamethasone-inducible gene expression system pOp6/LhGR, which comprises the chimeric transcription activator LhGR and the corresponding pOp6 promoter. Upon induction, the LhGR activator binds to the pOp6 promoter and induces expression of the target gene of interest. We provide detailed protocols for inducing transgene expression at different developmental stages and in different plant species and discuss dexamethasone stability and use of its analogs. We also introduce new, versatile, GATEWAY-compatible binary vectors that are now available for the pOp6/LhGR system. © 2019 by John Wiley & Sons, Inc.


Assuntos
Arabidopsis/genética , Plantas Geneticamente Modificadas/genética , Ativação Transcricional , Transgenes , Proteínas de Ligação a DNA/genética , Dexametasona/farmacologia , Proteínas de Escherichia coli/genética , Técnicas Genéticas , Repressores Lac/genética , Regiões Promotoras Genéticas , Receptores de Glucocorticoides/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Ativação Transcricional/efeitos dos fármacos
12.
mBio ; 3(5): e00259-12, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22951933

RESUMO

The major cause of athlete's foot is Trichophyton rubrum, a dermatophyte or fungal pathogen of human skin. To facilitate molecular analyses of the dermatophytes, we sequenced T. rubrum and four related species, Trichophyton tonsurans, Trichophyton equinum, Microsporum canis, and Microsporum gypseum. These species differ in host range, mating, and disease progression. The dermatophyte genomes are highly colinear yet contain gene family expansions not found in other human-associated fungi. Dermatophyte genomes are enriched for gene families containing the LysM domain, which binds chitin and potentially related carbohydrates. These LysM domains differ in sequence from those in other species in regions of the peptide that could affect substrate binding. The dermatophytes also encode novel sets of fungus-specific kinases with unknown specificity, including nonfunctional pseudokinases, which may inhibit phosphorylation by competing for kinase sites within substrates, acting as allosteric effectors, or acting as scaffolds for signaling. The dermatophytes are also enriched for a large number of enzymes that synthesize secondary metabolites, including dermatophyte-specific genes that could synthesize novel compounds. Finally, dermatophytes are enriched in several classes of proteases that are necessary for fungal growth and nutrient acquisition on keratinized tissues. Despite differences in mating ability, genes involved in mating and meiosis are conserved across species, suggesting the possibility of cryptic mating in species where it has not been previously detected. These genome analyses identify gene families that are important to our understanding of how dermatophytes cause chronic infections, how they interact with epithelial cells, and how they respond to the host immune response.


Assuntos
Arthrodermataceae/genética , Arthrodermataceae/patogenicidade , Microsporum/genética , Microsporum/patogenicidade , Trichophyton/genética , Trichophyton/patogenicidade , Fatores de Virulência/genética , DNA Fúngico/química , DNA Fúngico/genética , Genes Fúngicos , Genoma Fúngico , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA
13.
Methods Cell Biol ; 85: 353-80, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18155470

RESUMO

Fluorescent proteins have had a great impact on the way in which plant membrane traffic is studied. Here we review the uses to which these molecules have been put in this field of research and discuss the advantages and pitfalls of particular fluorescent protein derivatives in various applications and plant species. We discuss in detail the need for quantitative estimates of expression level and the potential of fluorescent proteins for quantitative assays of biosynthetic membrane traffic. Detailed descriptions and protocols are provided for the use of the newly developed 2A-based ratiometric polyprotein probes of membrane traffic in conjunction with semiautomated image analysis software packages for quantitative analyses. The ratiometric probes and software are available from the authors.


Assuntos
Membrana Celular/metabolismo , Proteínas de Fluorescência Verde , Membranas Intracelulares/metabolismo , Proteínas Luminescentes , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Confocal , Microscopia de Fluorescência/métodos , Proteínas Recombinantes de Fusão/metabolismo
14.
Traffic ; 7(12): 1701-23, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17118121

RESUMO

Fluorescent protein markers are widely used to report plant membrane traffic; however, effective protocols to quantify fluorescence or marker expression are lacking. Here the 20 residue self-cleaving 2A peptide from Foot and Mouth Disease Virus was used to construct polyproteins that expressed a trafficked marker in fixed stoichiometry with a reference protein in a different cellular compartment. Various pairs of compartments were simultaneously targeted. Together with a bespoke image analysis tool, these constructs allowed biosynthetic membrane traffic to be assayed with markedly improved sensitivity, dynamic range and statistical significance using protocols compatible with the common plant transfection and transgenic systems. As marker and effector expression could be monitored in populations or individual cells, saturation phenomena could be avoided and stochastic or epigenetic influences could be controlled. Surprisingly, mutational analysis of the ratiometric assay constructs revealed that the 2A peptide was dispensable for efficient cleavage of polyproteins carrying a single internal signal peptide, whereas the signal peptide was essential. In contrast, a construct bearing two signal peptide/anchors required 2A for efficient separation and stability, but 2A caused the amino-terminal moiety of such fusions to be mis-sorted to the vacuole. A model to account for the behaviour of 2A in these and other studies in plants is proposed.


Assuntos
Arabidopsis/metabolismo , Membrana Celular/metabolismo , Nicotiana/metabolismo , Poliproteínas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Biomarcadores , Citoplasma/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Epiderme Vegetal/metabolismo , Poliproteínas/química , Poliproteínas/genética , Biossíntese de Proteínas , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Plântula/genética , Plântula/metabolismo , Nicotiana/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
Plant J ; 45(4): 651-83, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16441354

RESUMO

Several vector systems are available for tissue-specific transactivation or chemical induction of transgene expression in plants. The choice facing researchers is which promoter system to commit to as this determines the range and characteristics of the expression resources available. The decision will not be the same for all species or applications. We present some general discussion on the use of these technologies and review in detail the properties in various (mainly angiosperm) species of the most promising: mGal4:VP16/UAS and pOp/LhG4 for transactivation, and the alc-switch, GVE/VGE, GVG, pOp6/LhGR, and XVE systems for chemical induction.


Assuntos
Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Regiões Promotoras Genéticas , Ativação Transcricional
16.
Plant J ; 41(6): 919-35, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15743454

RESUMO

We describe pOp/LhGR, a dexamethasone-inducible derivative of the pOp/LhG4 transcription activation system, and its use in tobacco to regulate expression of uidA (encoding beta-glucuronidase; GUS) and the cytokinin-biosnythetic gene ipt. The pOp/LhGR system exhibited stringent regulation and strong induced phenotypes in soil and tissue culture. In conjunction with an improved target promoter, pOp6, that carries six copies of an optimized lac operator sequence the pOp6/LhGR system directed induced GUS activities that exceeded those obtained with pOp/LhG4 or the CaMV 35S promoter but without increased uninduced activity. A single dose of dexamethasone was sufficient to direct cytotoxic levels of ipt expression in soil-grown plants although uninduced plants grew normally throughout a complete life cycle. In vitro, induced transcripts were detectable within an hour of dexamethasone application and 1 nM dexamethasone was sufficient for half maximal induction of GUS activity. Various methods of dexamethasone application were successfully applied under tissue culture and greenhouse conditions. We observed no inhibitory effects of dexamethasone or LhGR on plant development even with the highest concentrations of inducer, although tobacco seedlings were adversely affected by ethanol used as a solvent for dexamethasone stock solutions. The pOp/LhGR system provides a highly sensitive, efficient, and tightly regulated chemically inducible transgene expression system for tobacco plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Vetores Genéticos , Nicotiana/genética , Proteínas Recombinantes de Fusão/genética , Dexametasona/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Genes Reporter , Técnicas Genéticas , Glucocorticoides/farmacologia , Óperon Lac , Fenótipo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/metabolismo , Plântula/metabolismo , Fatores de Tempo , Nicotiana/efeitos dos fármacos , Fatores de Transcrição
17.
Plant J ; 41(6): 899-918, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15743453

RESUMO

To facilitate glucocorticoid-inducible transgene expression from the pOp promoter in Arabidopsis the ligand-binding domain of a rat glucocorticoid receptor (GR LBD) was fused to the amino terminus of the synthetic transcription factor LhG4 to generate LhGR-N. Fusions bearing the GR LBD at other positions in LhG4 exhibited incomplete repression or inefficient induction. LhGR-N was stringently repressed in the absence of exogenous glucocorticoid but was fully activated by addition of 2 microm dexamethasone which resulted in 1000-fold increase in GUS reporter activity. Half maximal induction was achieved with 0.2 microm dexamethasone. Reporter transcripts were detectable within 2 h of dexamethasone application and peaked 4-10 h later. Neither LhGR-N nor dexamethasone affected seedling development although ethanol retarded development when used as a solvent for dexamethasone. The efficiency of the pOp target promoter was improved 10- to 20-fold by incorporating six copies of the ideal lac operator with sufficient inter-operator spacing to allow simultaneous occupancy. Introduction of the TMV Omega sequence into the 5'UTR resulted in a further 10-fold increase in dexamethasone-inducible reporter activity and an increase in the induction factor to 10(4). Although promoters containing the TMV Omega sequence exhibited slightly increased basal expression levels in the absence of dexamethasone, stringent regulation of the cytokinin biosynthetic gene ipt was achieved with all promoters. Despite the severity of the induced ipt phenotypes, transcripts for the KNOX homoeodomain transcription factors BREVIPEDICELLUS and SHOOTMERISTEMLESS were not significantly increased within 48 h of dexamethasone application to seedlings.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Vetores Genéticos , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes de Fusão/genética , Arabidopsis/efeitos dos fármacos , Dexametasona/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Genes Reporter , Técnicas Genéticas , Glucocorticoides/farmacologia , Óperon Lac , Fenótipo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA