Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(48): e202212623, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36178733

RESUMO

Aromatic carboxylic anhydrides are ubiquitous building blocks in organic materials chemistry and have received considerable attention in the synthesis of organic semiconductors, pigments, and battery electrode materials. Here we extend the family of aromatic carboxylic anhydrides with a unique new member, a conjugated cyclophane with four anhydride groups. The cyclophane is obtained in a three-step synthesis and can be functionalised efficiently, as shown by the conversion into tetraimides and an octacarboxylate. Crystal structures reveal the high degree of porosity achievable with the new building block. Excellent electrochemical properties and reversible reduction to the tetraanions are shown for the imides; NMR and EPR measurements confirm the global aromaticity of the dianions and evidence the global Baird aromaticity of the tetraanions. Considering the short synthesis and unique properties, we expect widespread use of the new building block in the development of organic materials.

2.
Angew Chem Weinheim Bergstr Ger ; 134(48): e202212623, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38504923

RESUMO

Aromatic carboxylic anhydrides are ubiquitous building blocks in organic materials chemistry and have received considerable attention in the synthesis of organic semiconductors, pigments, and battery electrode materials. Here we extend the family of aromatic carboxylic anhydrides with a unique new member, a conjugated cyclophane with four anhydride groups. The cyclophane is obtained in a three-step synthesis and can be functionalised efficiently, as shown by the conversion into tetraimides and an octacarboxylate. Crystal structures reveal the high degree of porosity achievable with the new building block. Excellent electrochemical properties and reversible reduction to the tetraanions are shown for the imides; NMR and EPR measurements confirm the global aromaticity of the dianions and evidence the global Baird aromaticity of the tetraanions. Considering the short synthesis and unique properties, we expect widespread use of the new building block in the development of organic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA