RESUMO
BACKGROUND: We assessed the ability of a brain-and-cord-matched quantitative magnetic resonance imaging (qMRI) protocol to differentiate patients with progressive multiple sclerosis (PMS) from controls, in terms of normal-appearing (NA) tissue abnormalities, and explain disability. METHODS: A total of 27 patients and 16 controls were assessed on the Expanded Disability Status Scale (EDSS), 25-foot timed walk (TWT), 9-hole peg (9HPT) and symbol digit modalities (SDMT) tests. All underwent 3T brain and (C2-C3) cord structural imaging and qMRI (relaxometry, quantitative magnetisation transfer, multi-shell diffusion-weighted imaging), using a fast brain-and-cord-matched protocol with brain-and-cord-unified imaging readouts. Lesion and NA-tissue volumes and qMRI metrics reflecting demyelination and axonal loss were obtained. Random forest analyses identified the most relevant volumetric/qMRI measures to clinical outcomes. Confounder-adjusted linear regression estimated the actual MRI-clinical associations. RESULTS: Several qMRI/volumetric differences between patients and controls were observed (p < 0.01). Higher NA-deep grey matter quantitative-T1 (EDSS: beta = 7.96, p = 0.006; 9HPT: beta = -0.09, p = 0.004), higher NA-white matter orientation dispersion index (TWT: beta = -3.21, p = 0.005; SDMT: beta = -847.10, p < 0.001), lower whole-cord bound pool fraction (9HPT: beta = 0.79, p = 0.001) and higher NA-cortical grey matter quantitative-T1 (SDMT = -94.31, p < 0.001) emerged as particularly relevant predictors of greater disability. CONCLUSION: Fast brain-and-cord-matched qMRI protocols are feasible and identify demyelination - combined with other mechanisms - as key for disability accumulation in PMS.
Assuntos
Medula Cervical , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Medula Cervical/patologia , Esclerose Múltipla/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla Crônica Progressiva/patologia , Substância Cinzenta/patologiaRESUMO
BACKGROUND: Optic neuritis (ON) is a common feature of inflammatory demyelinating diseases (IDDs) such as multiple sclerosis (MS), aquaporin 4-antibody neuromyelitis optica spectrum disorder (AQP4 + NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). However, the involvement of the optic chiasm (OC) in IDD has not been fully investigated. AIMS: To examine OC differences in non-acute IDD patients with (ON+) and without ON (ON-) using magnetisation transfer ratio (MTR), to compare differences between MS, AQP4 + NMOSD and MOGAD and understand their associations with other neuro-ophthalmological markers. METHODS: Twenty-eight relapsing-remitting multiple sclerosis (RRMS), 24 AQP4 + NMOSD, 28 MOGAD patients and 32 healthy controls (HCs) underwent clinical evaluation, MRI and optical coherence tomography (OCT) scan. Multivariable linear regression models were applied. RESULTS: ON + IDD patients showed lower OC MTR than HCs (28.87 ± 4.58 vs 31.65 ± 4.93; p = 0.004). When compared with HCs, lower OC MTR was found in ON + AQP4 + NMOSD (28.55 ± 4.18 vs 31.65 ± 4.93; p = 0.020) and MOGAD (28.73 ± 4.99 vs 31.65 ± 4.93; p = 0.007) and in ON- AQP4 + NMOSD (28.37 ± 7.27 vs 31.65 ± 4.93; p = 0.035). ON+ RRMS had lower MTR than ON- RRMS (28.87 ± 4.58 vs 30.99 ± 4.76; p = 0.038). Lower OC MTR was associated with higher number of ON (regression coefficient (RC) = -1.15, 95% confidence interval (CI) = -1.819 to -0.490, p = 0.001), worse visual acuity (RC = -0.026, 95% CI = -0.041 to -0.011, p = 0.001) and lower peripapillary retinal nerve fibre layer (pRNFL) thickness (RC = 1.129, 95% CI = 0.199 to 2.059, p = 0.018) when considering the whole IDD group. CONCLUSION: OC microstructural damage indicates prior ON in IDD and is linked to reduced vision and thinner pRNFL.
Assuntos
Aquaporina 4 , Autoanticorpos , Esclerose Múltipla Recidivante-Remitente , Glicoproteína Mielina-Oligodendrócito , Neuromielite Óptica , Quiasma Óptico , Tomografia de Coerência Óptica , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aquaporina 4/imunologia , Autoanticorpos/sangue , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/patologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Neuromielite Óptica/imunologia , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/patologia , Quiasma Óptico/patologia , Quiasma Óptico/diagnóstico por imagem , Neurite Óptica/imunologia , Neurite Óptica/diagnóstico por imagem , Neurite Óptica/patologia , Adulto JovemRESUMO
PURPOSE: Spinal cord gray-matter imaging is valuable for a number of applications, but remains challenging. The purpose of this work was to compare various MRI protocols at 1.5 T, 3 T, and 7 T for visualizing the gray matter. METHODS: In vivo data of the cervical spinal cord were collected from nine different imaging centers. Data processing consisted of automatically segmenting the spinal cord and its gray matter and co-registering back-to-back scans. We computed the SNR using two methods (SNR_single using a single scan and SNR_diff using the difference between back-to-back scans) and the white/gray matter contrast-to-noise ratio per unit time. Synthetic phantom data were generated to evaluate the metrics performance. Experienced radiologists qualitatively scored the images. We ran the same processing on an open-access multicenter data set of the spinal cord MRI (N = 267 participants). RESULTS: Qualitative assessments indicated comparable image quality for 3T and 7T scans. Spatial resolution was higher at higher field strength, and image quality at 1.5 T was found to be moderate to low. The proposed quantitative metrics were found to be robust to underlying changes to the SNR and contrast; however, the SNR_single method lacked accuracy when there were excessive partial-volume effects. CONCLUSION: We propose quality assessment criteria and metrics for gray-matter visualization and apply them to different protocols. The proposed criteria and metrics, the analyzed protocols, and our open-source code can serve as a benchmark for future optimization of spinal cord gray-matter imaging protocols.
Assuntos
Medula Cervical , Substância Branca , Substância Cinzenta/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Estudos Multicêntricos como Assunto , Medula Espinal/diagnóstico por imagem , Substância Branca/diagnóstico por imagemRESUMO
Many studies report an overlap of MRI and clinical findings between patients with relapsing-remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS), which in part is reflective of inclusion of subjects with variable disease duration and short periods of follow-up. To overcome these limitations, we examined the differences between RRMS and SPMS and the relationship between MRI measures and clinical outcomes 30 years after first presentation with clinically isolated syndrome suggestive of multiple sclerosis. Sixty-three patients were studied 30 years after their initial presentation with a clinically isolated syndrome; only 14% received a disease modifying treatment at any time point. Twenty-seven patients developed RRMS, 15 SPMS and 21 experienced no further neurological events; these groups were comparable in terms of age and disease duration. Clinical assessment included the Expanded Disability Status Scale, 9-Hole Peg Test and Timed 25-Foot Walk and the Brief International Cognitive Assessment For Multiple Sclerosis. All subjects underwent a comprehensive MRI protocol at 3 T measuring brain white and grey matter (lesions, volumes and magnetization transfer ratio) and cervical cord involvement. Linear regression models were used to estimate age- and gender-adjusted group differences between clinical phenotypes after 30 years, and stepwise selection to determine associations between a large sets of MRI predictor variables and physical and cognitive outcome measures. At the 30-year follow-up, the greatest differences in MRI measures between SPMS and RRMS were the number of cortical lesions, which were higher in SPMS (the presence of cortical lesions had 100% sensitivity and 88% specificity), and grey matter volume, which was lower in SPMS. Across all subjects, cortical lesions, grey matter volume and cervical cord volume explained 60% of the variance of the Expanded Disability Status Scale; cortical lesions alone explained 43%. Grey matter volume, cortical lesions and gender explained 43% of the variance of Timed 25-Foot Walk. Reduced cortical magnetization transfer ratios emerged as the only significant explanatory variable for the symbol digit modality test and explained 52% of its variance. Cortical involvement, both in terms of lesions and atrophy, appears to be the main correlate of progressive disease and disability in a cohort of individuals with very long follow-up and homogeneous disease duration, indicating that this should be the target of therapeutic interventions.
Assuntos
Encéfalo/patologia , Progressão da Doença , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Idoso , Doenças Desmielinizantes/patologia , Avaliação da Deficiência , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-IdadeRESUMO
Multicenter clinical and quantitative magnetic resonance imaging (qMRI) studies require a high degree of reproducibility across different sites and scanner manufacturers, as well as time points. We therefore implemented a multiparameter mapping (MPM) protocol based on vendor's product sequences and demonstrate its repeatability and reproducibility for whole-brain coverage. Within ~20 min, four MPM metrics (magnetization transfer saturation [MT], proton density [PD], longitudinal [R1], and effective transverse [R2*] relaxation rates) were measured using an optimized 1 mm isotropic resolution protocol on six 3 T MRI scanners from two different vendors. The same five healthy participants underwent two scanning sessions, on the same scanner, at each site. MPM metrics were calculated using the hMRI-toolbox. To account for different MT pulses used by each vendor, we linearly scaled the MT values to harmonize them across vendors. To determine longitudinal repeatability and inter-site comparability, the intra-site (i.e., scan-rescan experiment) coefficient of variation (CoV), inter-site CoV, and bias across sites were estimated. For MT, R1, and PD, the intra- and inter-site CoV was between 4 and 10% across sites and scan time points for intracranial gray and white matter. A higher intra-site CoV (16%) was observed in R2* maps. The inter-site bias was below 5% for all parameters. In conclusion, the MPM protocol yielded reliable quantitative maps at high resolution with a short acquisition time. The high reproducibility of MPM metrics across sites and scan time points combined with its tissue microstructure sensitivity facilitates longitudinal multicenter imaging studies targeting microstructural changes, for example, as a quantitative MRI biomarker for interventional clinical trials.
Assuntos
Mapeamento Encefálico/normas , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Adulto , Mapeamento Encefálico/instrumentação , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Masculino , Reprodutibilidade dos TestesRESUMO
BACKGROUND: In relapse-onset multiple sclerosis (MS), tissue abnormality - as assessed with magnetisation transfer ratio (MTR) imaging - is greater in the outer cortical and inner periventricular layers. The cause of this remains unknown but meningeal inflammation has been implicated, particularly lymphoid follicles, which are seen in secondary progressive (SP) but not primary progressive (PP) MS. Cortical and periventricular MTR gradients might, therefore, differ in PPMS and SPMS if these follicles are responsible. OBJECTIVE: We assessed cortical and periventricular MTR gradients in PPMS, and compared gradients between people with PPMS and SPMS. METHODS: Using an optimised processing pipeline, periventricular normal-appearing white matter and cortical grey-matter MTR gradients were compared between 51 healthy controls and 63 people with progressive MS (28 PPMS, 35 SPMS). RESULTS: The periventricular gradient was significantly shallower in healthy controls (0.122 percentage units (pu)/band) compared to PPMS (0.952 pu/band, p < 0.0001) and SPMS (1.360 pu/band, p < 0.0001). The cortical gradient was also significantly shallower in healthy controls (-2.860 pu/band) compared to PPMS (-3.214 pu/band, p = 0.038) and SPMS (-3.328 pu/band, p = 0.016). CONCLUSION: Abnormal periventricular and cortical MTR gradients occur in both PPMS and SPMS, suggesting comparable underlying pathological processes.
Assuntos
Córtex Cerebral/patologia , Imageamento por Ressonância Magnética , Esclerose Múltipla Crônica Progressiva/patologia , Substância Branca/patologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Substância Branca/diagnóstico por imagemRESUMO
BACKGROUND: In multiple sclerosis (MS), disease effects on magnetisation transfer ratio (MTR) increase towards the ventricles. This periventricular gradient is evident shortly after first symptoms and is independent of white matter lesions. OBJECTIVE: To explore if alemtuzumab, a peripherally acting disease-modifying treatment, modifies the gradient's evolution, and whether baseline gradients predict on-treatment relapses. METHODS: Thirty-four people with relapsing-remitting MS underwent annual magnetic resonance imaging (MRI) scanning (19 receiving alemtuzumab (four scans each), 15 untreated (three scans each)). The normal-appearing white matter was segmented into concentric bands. Gradients were measured over the three bands nearest the ventricles. Mixed-effects models adjusted for age, gender, relapse rate, lesion number and brain parenchymal fraction compared the groups' baseline gradients and evolution. RESULTS: Untreated, the mean MTR gradient increased (+0.030 pu/band/year) but decreased following alemtuzumab (-0.045 pu/band/year, p = 0.037). Within the alemtuzumab group, there were no significant differences in baseline lesion number (p = 0.568) nor brain parenchymal fraction (p = 0.187) between those who relapsed within 4 years (n = 4) and those who did not (n = 15). However, the baseline gradient was significantly different (p = 0.020). CONCLUSION: Untreated, abnormal periventricular gradients worsen with time, but appear reversible with peripheral immunotherapy. Baseline gradients - but not lesion loads or brain volumes - may predict on-treatment relapses. Larger confirmatory studies are required.
Assuntos
Alemtuzumab , Esclerose Múltipla Recidivante-Remitente , Substância Branca , Alemtuzumab/uso terapêutico , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Substância Branca/diagnóstico por imagemRESUMO
PURPOSE: To enable clinical applications of quantitative magnetization transfer (qMT) imaging by developing a fast method to map one of its fundamental model parameters, the bound pool fraction (BPF), in the human brain. THEORY AND METHODS: The theory of steady-state MT in the fast-exchange approximation is used to provide measurements of BPF, and bound pool transverse relaxation time ( T2B ). A sequence that allows sampling of the signal during steady-state MT saturation is used to perform BPF mapping with a 10-min-long fully echo planar imaging-based MRI protocol, including inversion recovery T1 mapping and B1 error mapping. The approach is applied in 6 healthy subjects and 1 multiple sclerosis patient, and validated against a single-slice full qMT reference acquisition. RESULTS: BPF measurements are in agreement with literature values using off-resonance MT, with average BPF of 0.114(0.100-0.128) in white matter and 0.068(0.054-0.085) in gray matter. Median voxel-wise percentage error compared with standard single slice qMT is 4.6%. Slope and intercept of linear regression between new and reference BPF are 0.83(0.81-0.85) and 0.013(0.11-0.16). Bland-Altman plot mean bias is 0.005. In the multiple sclerosis case, the BPF is sensitive to pathological changes in lesions. CONCLUSION: The method developed provides accurate BPF estimates and enables shorter scan time compared with currently available approaches, demonstrating the potential of bringing myelin sensitive measurement closer to the clinic.
Assuntos
Imagem Ecoplanar/métodos , Interpretação de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Humanos , Esclerose Múltipla/diagnóstico por imagem , Bainha de Mielina/químicaRESUMO
PURPOSE: To develop a fast and robust method for measuring T1 in the whole cervical spinal cord in vivo, and to assess its reproducibility. METHODS: A spatially nonselective adiabatic inversion pulse is combined with zonally oblique-magnified multislice echo-planar imaging to produce a reduced field-of-view inversion-recovery echo-planar imaging protocol. Multi- inversion time data are obtained by cycling slice order throughout sequence repetitions. Measurement of T1 is performed using 12 inversion times for a total protocol duration of 7 min. Reproducibility of regional T1 estimates is assessed in a scan-rescan experiment on five heathy subjects. RESULTS: Regional mean (standard deviation) T1 was: 1108.5 (±77.2) ms for left lateral column, 1110.1 (±83.2) ms for right lateral column, 1150.4 (±102.6) ms for dorsal column, and 1136.4 (±90.8) ms for gray matter. Regional T1 estimates showed good correlation between sessions (Pearson correlation coefficient = 0.89 (P value < 0.01); mean difference = 2 ms, 95% confidence interval ± 20 ms); and high reproducibility (intersession coefficient of variation approximately 1% in all the regions considered, intraclass correlation coefficient = 0.88 (P value < 0.01, confidence interval 0.71-0.95)). CONCLUSIONS: T1 estimates in the cervical spinal cord are reproducible using inversion-recovery zonally oblique-magnified multislice echo-planar imaging. The short acquisition time and large coverage of this method paves the way for accurate T1 mapping for various spinal cord pathologies. Magn Reson Med 79:2142-2148, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Assuntos
Medula Cervical/diagnóstico por imagem , Imagem Ecoplanar/métodos , Adulto , Algoritmos , Encéfalo/diagnóstico por imagem , Feminino , Voluntários Saudáveis , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino , Movimento (Física) , Imagens de Fantasmas , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por ComputadorRESUMO
PURPOSE: To develop a framework to fully characterize quantitative magnetization transfer indices in the human cervical cord in vivo within a clinically feasible time. METHODS: A dedicated spinal cord imaging protocol for quantitative magnetization transfer was developed using a reduced field-of-view approach with echo planar imaging (EPI) readout. Sequence parameters were optimized based in the Cramer-Rao-lower bound. Quantitative model parameters (i.e., bound pool fraction, free and bound pool transverse relaxation times [ T2F, T2B], and forward exchange rate [kFB ]) were estimated implementing a numerical model capable of dealing with the novelties of the sequence adopted. The framework was tested on five healthy subjects. RESULTS: Cramer-Rao-lower bound minimization produces optimal sampling schemes without requiring the establishment of a steady-state MT effect. The proposed framework allows quantitative voxel-wise estimation of model parameters at the resolution typically used for spinal cord imaging (i.e. 0.75 × 0.75 × 5 mm3 ), with a protocol duration of â¼35 min. Quantitative magnetization transfer parametric maps agree with literature values. Whole-cord mean values are: bound pool fraction = 0.11(±0.01), T2F = 46.5(±1.6) ms, T2B = 11.0(±0.2) µs, and kFB = 1.95(±0.06) Hz. Protocol optimization has a beneficial effect on reproducibility, especially for T2B and kFB . CONCLUSION: The framework developed enables robust characterization of spinal cord microstructure in vivo using qMT. Magn Reson Med 79:2576-2588, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Assuntos
Medula Cervical/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Adulto , Algoritmos , Medula Cervical/química , Feminino , Humanos , Masculino , Bainha de Mielina/químicaRESUMO
In established multiple sclerosis, tissue abnormality-as assessed using magnetization transfer ratio-increases close to the lateral ventricles. We aimed to determine whether or not (i) these changes are present from the earliest clinical stages of multiple sclerosis; (ii) they occur independent of white matter lesions; and (iii) they are associated with subsequent conversion to clinically definite multiple sclerosis and disability. Seventy-one subjects had MRI scanning a median of 4.6 months after a clinically isolated optic neuritis (49 females, mean age 33.5 years) and were followed up clinically 2 and 5 years later. Thirty-seven healthy controls (25 females, mean age 34.4 years) were also scanned. In normal-appearing white matter, magnetization transfer ratio gradients were measured 1-5 mm and 6-10 mm from the lateral ventricles. In control subjects, magnetization transfer ratio was highest adjacent to the ventricles and decreased with distance from them; in optic neuritis, normal-appearing white matter magnetization transfer ratio was lowest adjacent to the ventricles, increased over the first 5 mm, and then paralleled control values. The magnetization transfer ratio gradient over 1-5 mm differed significantly between the optic neuritis and control groups [+0.059 percentage units/mm (pu/mm) versus -0.033 pu/mm, P = 0.010], and was significantly steeper in those developing clinically definite multiple sclerosis within 2 years compared to those who did not (0.132 pu/mm versus 0.016 pu/mm, P = 0.020). In multivariate binary logistic regression the magnetization transfer ratio gradient was independently associated with the development of clinically definite multiple sclerosis within 2 years (magnetization transfer ratio gradient odds ratio 61.708, P = 0.023; presence of T2 lesions odds ratio 8.500, P = 0.071). At 5 years, lesional measures overtook magnetization transfer ratio gradients as significant predictors of conversion to multiple sclerosis. The magnetization transfer ratio gradient was not significantly affected by the presence of brain lesions [T2 lesions (P = 0.918), periventricular T2 lesions (P = 0.580) or gadolinium-enhancing T1 lesions (P = 0.724)]. The magnetization transfer ratio gradient also correlated with Expanded Disability Status Scale score 5 years later (Spearman r = 0.313, P = 0.027). An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis, is clinically relevant, and may arise from one or more mechanisms that are at least partly independent of lesion formation.
Assuntos
Ventrículos Cerebrais/diagnóstico por imagem , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Adulto , Atrofia , Estudos de Coortes , Avaliação da Deficiência , Progressão da Doença , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Neurite Óptica/diagnóstico por imagem , Neurite Óptica/etiologia , Prótons , Substância Branca/patologia , Adulto JovemRESUMO
The relationship between the BOLD response and an applied force was quantified in the cerebellum using a power grip task. To investigate whether the cerebellum responds in an on/off way to motor demands or contributes to motor responses in a parametric fashion, similarly to the cortex, five grip force levels were investigated under visual feedback. Functional MRI data were acquired in 13 healthy volunteers and their responses were analyzed using a cerebellum-optimized pipeline. This allowed us to evaluate, within the cerebellum, voxelwise linear and non-linear associations between cerebellar activations and forces. We showed extensive non-linear activations (with a parametric design), covering the anterior and posterior lobes of the cerebellum with a BOLD-force relationship that is region-dependent. Linear responses were mainly located in the anterior lobe, similarly to the cortex, where linear responses are localized in M1. Complex responses were localized in the posterior lobe, reflecting its key role in attention and executive processing, required during visually guided movement. Given the highly organized responses in the cerebellar cortex, a key question is whether deep cerebellar nuclei show similar parametric effects. We found positive correlations with force in the ipsilateral dentate nucleus and negative correlations on the contralateral side, suggesting a somatotopic organization of the dentate nucleus in line with cerebellar and cortical areas. Our results confirm that there is cerebellar organization involving all grey matter structures that reflect functional segregation in the cortex, where cerebellar lobules and dentate nuclei contribute to complex motor tasks with different BOLD response profiles in relation to the forces. Hum Brain Mapp 38:2566-2579, 2017. © 2017 Wiley Periodicals, Inc.
Assuntos
Mapeamento Encefálico , Núcleos Cerebelares/irrigação sanguínea , Cerebelo/irrigação sanguínea , Oxigênio/sangue , Adulto , Núcleos Cerebelares/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Análise e Desempenho de TarefasRESUMO
OBJECTIVE: To assess the association between proximity to the inner (ventricular and aqueductal) and outer (pial) surfaces of the brain and the distribution of normal appearing white matter (NAWM) and grey matter (GM) abnormalities, and white matter (WM) lesions, in multiple sclerosis (MS). METHODS: 67 people with relapse-onset MS and 30 healthy controls were included in the study. Volumetric T1 images and high-resolution (1â mm3) magnetisation transfer ratio (MTR) images were acquired and segmented into 12 bands between the inner and outer surfaces of the brain. The first and last bands were discarded to limit partial volume effects with cerebrospinal fluid. MTR values were computed for all bands in supratentorial NAWM, cerebellar NAWM and brainstem NA tissue, and deep and cortical GM. Band WM lesion volumes were also measured. RESULTS: Proximity to the ventricular surfaces was associated with progressively lower MTR values in the MS group but not in controls in supratentorial and cerebellar NAWM, brainstem NA and in deep and cortical GM. The density of WM lesions was associated with proximity to the ventricles only in the supratentorial compartment, and no link was found with distance from the pial surfaces. CONCLUSIONS: In MS, MTR abnormalities in NAWM and GM are related to distance from the inner and outer surfaces of the brain, and this suggests that there is a common factor underlying their spatial distribution. A similar pattern was not found for WM lesions, raising the possibility that different factors promote their formation.
Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Tomografia Computadorizada de Feixe Cônico/métodos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto , Mapeamento Encefálico , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/patologia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Aqueduto do Mesencéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Ventrículos Cerebrais/diagnóstico por imagem , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Pia-Máter/diagnóstico por imagem , Pia-Máter/patologia , Valores de ReferênciaRESUMO
BACKGROUND: In multiple sclerosis (MS), diffusion tensor and magnetisation transfer imaging are both abnormal in lesional and extra-lesional cortical grey matter, but differences between clinical subtypes and associations with clinical outcomes have only been partly assessed. OBJECTIVE: To compare mean diffusivity, fractional anisotropy and magnetisation transfer ratio (MTR) in cortical grey matter lesions (detected using phase-sensitive inversion recovery (PSIR) imaging) and extra-lesional cortical grey matter, and assess associations with disability in relapse-onset MS. METHODS: Seventy-two people with MS (46 relapsing-remitting (RR), 26 secondary progressive (SP)) and 36 healthy controls were included in this study. MTR, mean diffusivity and fractional anisotropy were measured in lesional and extra-lesional cortical grey matter. RESULTS: Mean fractional anisotropy was higher and MTR lower in lesional compared with extra-lesional cortical grey matter. In extra-lesional cortical grey matter mean fractional anisotropy and MTR were lower, and mean diffusivity was higher in the MS group compared with controls. Mean MTR was lower and mean diffusivity was higher in lesional and extra-lesional cortical grey matter in SPMS when compared with RRMS. These differences were independent of disease duration. In multivariate analyses, MTR in extra-lesional more so than lesional cortical grey matter was associated with disability. CONCLUSION: Magnetic resonance abnormalities in lesional and extra-lesional cortical grey matter are greater in SPMS than RRMS. Changes in extra-lesional compared with lesional cortical grey matter are more consistently associated with disability.
Assuntos
Córtex Cerebral/patologia , Substância Cinzenta/patologia , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Adulto , Anisotropia , Estudos de Casos e Controles , Imagem de Tensor de Difusão , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/fisiopatologia , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , RecidivaRESUMO
In multiple sclerosis, there is increasing evidence that demyelination, and neuronal damage occurs preferentially in cortical grey matter next to the outer surface of the brain. It has been suggested that this may be due to the effects of pathology outside the brain parenchyma, in particular meningeal inflammation or through cerebrospinal fluid mediated factors. White matter lesions are often located adjacent to the ventricles of the brain, suggesting the possibility of a similar outside-in pathogenesis, but an investigation of the relationship of periventricular normal-appearing white matter abnormalities with distance from the ventricles has not previously been undertaken. The present study investigates this relationship in vivo using quantitative magnetic resonance imaging and compares the abnormalities between secondary progressive and relapsing remitting multiple sclerosis. Forty-three patients with relapsing remitting and 28 with secondary progressive multiple sclerosis, and 38 healthy control subjects were included in this study. T1-weighted volumetric, magnetization transfer and proton density/T2-weighted scans were acquired for all subjects. From the magnetization transfer data, magnetization transfer ratio maps were prepared. White matter tissue masks were derived from SPM8 segmentations of the T1-weighted images. Normal-appearing white matter masks were generated by subtracting white matter lesions identified on the proton density/T2 scan, and a two-voxel perilesional ring, from the SPM8 derived white matter masks. White matter was divided in concentric bands, each â¼1-mm thick, radiating from the ventricles toward the cortex. The first periventricular band was excluded from analysis to mitigate partial volume effects, and normal-appearing white matter and lesion magnetization transfer ratio values were then computed for the 10 bands nearest to the ventricles. Compared with controls, magnetization transfer ratio in the normal-appearing white matter bands was significantly lower in patients with multiple sclerosis. In controls, magnetization transfer ratio was highest in the band adjacent to the ventricles and declined with increasing distance from the ventricles. In the multiple sclerosis groups, relative to controls, reductions in magnetization transfer ratio were greater in the secondary progressive multiple sclerosis compared with relapsing remitting multiple sclerosis group, and these reductions were greatest next to the ventricles and became smaller with distance from them. White matter lesion magnetization transfer ratio reductions were also more apparent adjacent to the ventricle and decreased with distance from the ventricles in both the relapsing remitting and secondary progressive multiple sclerosis groups. These findings suggest that in people with multiple sclerosis, and more so in secondary progressive than relapsing remitting multiple sclerosis, tissue structural abnormalities in normal-appearing white matter and white matter lesions are greatest near the ventricles. This would be consistent with a cerebrospinal fluid or ependymal mediated pathogenesis.
Assuntos
Ventrículos Cerebrais/patologia , Imageamento por Ressonância Magnética , Esclerose Múltipla/patologia , Substância Branca/patologia , Adolescente , Adulto , Idoso , Líquido Cefalorraquidiano , Avaliação da Deficiência , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Motor fMRI studies, comparing dominant (DH) and nondominant (NDH) hand activations have reported mixed findings, especially for the extent of ipsilateral (IL) activations and their relationship with task complexity. To date, no study has directly compared DH and NDH activations using an event-related visually guided dynamic power-grip paradigm with parametric (three) forces (GF) in healthy right-handed subjects. We implemented a hierarchical statistical approach aimed to: (i) identify the main effect networks engaged when using either hand; (ii) characterise DH/NDH responses at different GFs; (iii) assess contralateral (CL)/IL-specific and hemisphere-specific activations. Beyond confirming previously reported results, this study demonstrated that increasing GF has an effect on motor response that is contextualised also by the use of DH or NDH. Linear analysis revealed increased activations in sensorimotor areas, with additional increased recruitments of subcortical and cerebellar areas when using the NDH. When looking at CL/IL-specific activations, CL sensorimotor areas and IL cerebellum were activated with both hands. When performing the task with the NDH, several areas were also recruited including the CL cerebellum. Finally, there were hand-side-independent activations of nonmotor-specific areas in the right and left hemispheres, with the right hemisphere being involved more extensively in sensori-motor integration through associative areas while the left hemisphere showing greater activation at higher GF. This study shows that the functional networks subtending DH/NDH power-grip visuomotor functions are qualitatively and quantitatively distinct and this should be taken into consideration when performing fMRI studies, particularly when planning interventions in patients with specific impairments.
Assuntos
Cerebelo/irrigação sanguínea , Córtex Cerebral/irrigação sanguínea , Lateralidade Funcional/fisiologia , Força da Mão/fisiologia , Mãos , Movimento/fisiologia , Adulto , Mapeamento Encefálico , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangueRESUMO
BACKGROUND: In multiple sclerosis (MS), demyelination and neuro-axonal loss occur in the brain grey matter (GM). We used magnetic resonance imaging (MRI) measures of GM magnetisation transfer ratio (MTR) and volume to assess the regional localisation of reduced MTR (reflecting demyelination) and atrophy (reflecting neuro-axonal loss) in relapsing-remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS). METHODS: A total of 98 people with MS (51 RRMS, 28 SPMS, 19 PPMS) and 29 controls had T1-weighted volumetric and magnetisation transfer scans. SPM8 was used to undertake voxel-based analysis (VBA) of GM tissue volumes and MTR. MS subgroups were compared with controls, adjusting for age and gender. A voxel-by-voxel basis correlation analysis between MTR and volume within each subject group was performed, using biological parametric mapping. RESULTS: MTR reduction was more extensive than atrophy. RRMS and SPMS patients showed proportionately more atrophy in the deep GM. SPMS and PPMS patients showed proportionately greater cortical MTR reduction. RRMS patients demonstrated the most correlation of MTR reduction and atrophy in deep GM. In SPMS and PPMS patients, there was less extensive correlation. CONCLUSIONS: These results suggest that in the deep GM of RRMS patients, demyelination and neuro-axonal loss may be linked, while in SPMS and PPMS patients, neuro-axonal loss and demyelination may occur mostly independently.
Assuntos
Encéfalo/patologia , Substância Cinzenta/patologia , Esclerose Múltipla/patologia , Adulto , Atrofia/patologia , Doenças Desmielinizantes/patologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , MasculinoRESUMO
Neuropathological studies in multiple sclerosis have suggested that meningeal inflammation in the brain may be linked to disease progression. Inflammation in the spinal cord meninges has been associated with axonal loss, a pathological substrate for disability. Quantitative magnetic resonance imaging facilitates the investigation of spinal cord microstructure by approximating histopathological changes. We acquired structural and quantitative imaging of the cervical spinal cord from which we calculated magnetization transfer ratio in the outer spinal cord-an area corresponding to the expected location of the pia mater and subpial region-and in spinal cord white and grey matter. We studied 26 healthy controls, 22 people with a clinically isolated syndrome, 29 with relapsing-remitting, 28 with secondary-progressive and 28 with primary-progressive multiple sclerosis. Magnetization transfer ratio values in the outermost region of the spinal cord were higher than the white matter in controls and patients: controls (51.35 ± 1.29 versus 49.87 ± 1.45, P < 0.01), clinically isolated syndrome (50.46 ± 1.39 versus 49.13 ± 1.19, P < 0.01), relapsing-remitting (48.86 ± 2.89 versus 47.44 ± 2.70, P < 0.01), secondary-progressive (46.33 ± 2.84 versus 44.75 ± 3.10, P < 0.01) and primary-progressive multiple sclerosis (46.99 ± 3.78 versus 45.62 ± 3.40, P < 0.01). In linear regression models controlling for cord area and age, higher outer spinal cord magnetization transfer ratio values were seen in controls than all patient groups: clinically isolated syndrome (coefficient = -0.32, P = 0.03), relapsing-remitting (coefficient = -0.48, P < 0.01), secondary-progressive (coefficient = -0.51, P < 0.01) and primary-progressive multiple sclerosis (coefficient = -0.38, P < 0.01). In a regression analysis correcting for age and cord area, magnetization transfer ratio values in the outer cord were lower in relapsing-remitting multiple sclerosis compared with clinically isolated syndrome (coefficient = -0.28, P = 0.02), and both primary and secondary-progressive compared to relapsing-remitting multiple sclerosis (coefficients = -0.29 and -0.24, respectively, P = 0.02 for both). In the clinically isolated syndrome and relapsing-remitting multiple sclerosis groups, outer cord magnetization transfer ratio was decreased in the absence of significant cord atrophy. In a multivariate regression analysis an independent association was seen between outer cord magnetization transfer ratio and cord atrophy (coefficient = 0.40, P < 0.01). Our in vivo imaging observations suggest that abnormalities in a region involving the pia mater and subpial cord occur early in the course of multiple sclerosis and are more marked in those with a progressive course.
Assuntos
Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico , Pia-Máter/patologia , Medula Espinal/patologia , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/epidemiologiaRESUMO
Trials of potential neuroreparative agents are becoming more important in the spectrum of multiple sclerosis research. Appropriate imaging outcomes are required that are feasible from a time and practicality point of view, as well as being sensitive and specific to myelin, while also being reproducible and clinically meaningful. Conventional MRI sequences have limited specificity for myelination. We evaluate the imaging modalities which are potentially more specific to myelin content in vivo, such as magnetisation transfer ratio (MTR), restricted proton fraction f (from quantitative magnetisation transfer measurements), myelin water fraction and diffusion tensor imaging (DTI) metrics, in addition to positron emission tomography (PET) imaging. Although most imaging applications to date have focused on the brain, we also consider measures with the potential to detect remyelination in the spinal cord and in the optic nerve. At present, MTR and DTI measures probably offer the most realistic and feasible outcome measures for such trials, especially in the brain. However, no one measure currently demonstrates sufficiently high sensitivity or specificity to myelin, or correlation with clinical features, and it should be useful to employ more than one outcome to maximise understanding and interpretation of findings with these sequences. PET may be less feasible for current and near-future trials, but is a promising technique because of its specificity. In the optic nerve, visual evoked potentials can indicate demyelination and should be correlated with an imaging outcome (such as optic nerve MTR), as well as clinical measures.
Assuntos
Esclerose Múltipla/patologia , Ensaios Clínicos como Assunto/métodos , Doenças Desmielinizantes/diagnóstico , Doenças Desmielinizantes/patologia , Imagem de Tensor de Difusão/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/tratamento farmacológico , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons , Resultado do TratamentoRESUMO
OBJECTIVE: Glutamate is the principal excitatory neurotransmitter and is involved in normal brain function. Cognitive impairment is common in multiple sclerosis (MS), and understanding its mechanisms is crucial for developing effective treatments. We used structural and metabolic brain imaging to test two hypotheses: (i) glutamate levels in grey matter regions are abnormal in MS, and (ii) patients show a relationship between glutamate concentration and memory performance. METHODS: Eighteen patients with relapsing-remitting MS and 17 healthy controls were cognitively assessed and underwent (1)H-magnetic resonance spectroscopy at 3â T to assess glutamate levels in the hippocampus, thalamus, cingulate and parietal cortices. Regression models investigated the association between glutamate concentration and memory performance independently of magnetisation transfer ratio values and grey matter lesions withint he same regions, and whole-brain grey matter volume. RESULTS: Patients had worse visual and verbal memory than controls. A positive relationship between glutamate levels in the hippocampal, thalamic and cingulate regions and visuospatial memory was detected in patients, but not in healthy controls. CONCLUSIONS: The relationship between memory and glutamate concentration, which is unique to MS patients, suggests the reliance of memory on glutamatergic systems in MS.