RESUMO
BACKGROUND: CC-90011 is an oral, potent, selective, reversible inhibitor of lysine-specific demethylase 1 (LSD1) that was well tolerated, with encouraging activity in patients who had advanced solid tumors or relapsed/refractory marginal zone lymphoma. The authors present long-term safety and efficacy and novel pharmacodynamic and pharmacokinetic data from the first-in-human study of CC-90011. METHODS: CC-90011-ST-001 (ClincalTrials.gov identifier NCT02875223; Eudract number 2015-005243-13) is a phase 1, multicenter study in which patients received CC-90011 once per week in 28-day cycles. The objectives were to determine the safety, maximum tolerated dose, and/or recommended phase 2 dose (primary) and to evaluate preliminary efficacy and pharmacokinetics (secondary). RESULTS: Sixty-nine patients were enrolled, including 50 in the dose-escalation arm and 19 in the dose-expansion arm. Thrombocytopenia was the most common treatment-related adverse event and was successfully managed with dose modifications. Clinical activity with prolonged, durable responses were observed, particularly in patients who had neuroendocrine neoplasms. In the dose-escalation arm, one patient with relapsed/refractory marginal zone lymphoma achieved a complete response (ongoing in cycle 58). In the dose-expansion arm, three patients with neuroendocrine neoplasms had stable disease after nine or more cycles, including one patient who was in cycle 46 of ongoing treatment. CC-90011 decreased levels of secreted neuroendocrine peptides chromogranin A, progastrin-releasing peptide, and RNA expression of the blood pharmacodynamic marker monocyte-to-macrophage differentiation-associated. CONCLUSIONS: The safety profile of CC-90011 suggested that its reversible mechanism of action may provide an advantage over other irreversible LSD1 inhibitors. The favorable tolerability profile, clinical activity, durable responses, and once-per-week dosing support further exploration of CC-90011 as monotherapy and in combination with other treatments for patients with advanced solid tumors and other malignancies.
Assuntos
Linfoma de Zona Marginal Tipo Células B , Neoplasias , Histona Desmetilases , Humanos , Dose Máxima Tolerável , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Compostos OrgânicosRESUMO
BACKGROUND: The bromodomain and extraterminal protein (BET) inhibitor trotabresib has demonstrated antitumor activity in patients with advanced solid tumors, including high-grade gliomas. CC-90010-GBM-001 (NCT04047303) is a phase I study investigating the pharmacokinetics, pharmacodynamics, and CNS penetration of trotabresib in patients with recurrent high-grade gliomas scheduled for salvage resection. METHODS: Patients received trotabresib 30 mg/day on days 1-4 before surgery, followed by maintenance trotabresib 45 mg/day 4 days on/24 days off after surgery. Primary endpoints were plasma pharmacokinetics and trotabresib concentrations in resected tissue. Secondary and exploratory endpoints included safety, pharmacodynamics, and antitumor activity. RESULTS: Twenty patients received preoperative trotabresib and underwent resection with no delays or cancelations of surgery; 16 patients received maintenance trotabresib after recovery from surgery. Trotabresib plasma pharmacokinetics were consistent with previous data. Mean trotabresib brain tumor tissue:plasma ratio was 0.84 (estimated unbound partition coefficient [KPUU] 0.37), and modulation of pharmacodynamic markers was observed in blood and brain tumor tissue. Trotabresib was well tolerated; the most frequent grade 3/4 treatment-related adverse event during maintenance treatment was thrombocytopenia (5/16 patients). Six-month progression-free survival was 12%. Two patients remain on treatment with stable disease at cycles 25 and 30. CONCLUSIONS: Trotabresib penetrates the blood-brain-tumor barrier in patients with recurrent high-grade glioma and demonstrates target engagement in resected tumor tissue. Plasma pharmacokinetics, blood pharmacodynamics, and safety were comparable with previous results for trotabresib in patients with advanced solid tumors. Investigation of adjuvant trotabresib + temozolomide and concomitant trotabresib + temozolomide + radiotherapy in patients with newly diagnosed glioblastoma is ongoing (NCT04324840).
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/uso terapêutico , Dacarbazina/uso terapêutico , Glioma/patologia , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Antineoplásicos Alquilantes/uso terapêuticoRESUMO
Background: Standard-of-care treatment for newly diagnosed glioblastoma (ndGBM), consisting of surgery followed by radiotherapy (RT) and temozolomide (TMZ), has improved outcomes compared with RT alone; however, prognosis remains poor. Trotabresib, a novel bromodomain and extraterminal inhibitor, has demonstrated antitumor activity in patients with high-grade gliomas. Methods: In this phase Ib, dose-escalation study (NCT04324840), we investigated trotabresib 15, 30, and 45 mg combined with TMZ in the adjuvant setting and trotabresib 15 and 30 mg combined with TMZ+RT in the concomitant setting in patients with ndGBM. Primary endpoints were to determine safety, tolerability, maximum tolerated dose, and/or recommended phase II dose (RP2D) of trotabresib. Secondary endpoints were assessment of preliminary efficacy and pharmacokinetics. Pharmacodynamics were investigated as an exploratory endpoint. Results: The adjuvant and concomitant cohorts enrolled 18 and 14 patients, respectively. Trotabresib in combination with TMZ or TMZ+RT was well tolerated; most treatment-related adverse events were mild or moderate. Trotabresib pharmacokinetics and pharmacodynamics in both settings were consistent with previous data for trotabresib monotherapy. The RP2D of trotabresib was selected as 30 mg 4 days on/24 days off in both settings. At last follow-up, 5 (28%) and 6 (43%) patients remain on treatment in the adjuvant and concomitant settings, respectively, with 1 patient in the adjuvant cohort achieving complete response. Conclusions: Trotabresib combined with TMZ in the adjuvant setting and with TMZ+RT in the concomitant setting was safe and well tolerated in patients with ndGBM, with encouraging treatment durations. Trotabresib 30 mg was established as the RP2D in both settings.
RESUMO
PURPOSE: Lysine-specific demethylase 1 (LSD1) is implicated in multiple tumor types, and its expression in cancer stem cells is associated with chemoresistance. CC-90011 is a potent, selective, and reversible oral LSD1 inhibitor. We examined CC-90011 in advanced solid tumors and relapsed/refractory (R/R) non-Hodgkin lymphoma (NHL). PATIENTS AND METHODS: CC-90011-ST-001 (NCT02875223; 2015-005243-13) is a phase I, multicenter, first-in-human dose-escalation study. Nine dose levels of CC-90011 (1.25-120 mg) given once per week were explored. Primary objectives were to determine safety, maximum tolerated dose (MTD), and/or recommended phase II dose (RP2D). Secondary objectives were to evaluate preliminary efficacy and pharmacokinetics. RESULTS: Fifty patients were enrolled, 49 with solid tumors (27 neuroendocrine tumors/carcinomas) and 1 with R/R NHL. Median age was 61 years (range, 22-75). Patients received a median of three (range, 1-9) prior anticancer regimens. The RP2D was 60 mg once per week; the nontolerated dose (NTD) and MTD were 120 mg once per week and 80 mg once per week, respectively. Grade 3/4 treatment-related toxicities were thrombocytopenia (20%; an on-target effect unassociated with clinically significant bleeding), neutropenia (8%; in the context of thrombocytopenia at the highest doses), and fatigue (2%). The patient with R/R NHL had a complete response, currently ongoing in cycle 34, and 8 patients with neuroendocrine tumors/carcinomas had stable disease ≥6 months, including bronchial neuroendocrine tumors, kidney tumor, and paraganglioma. CONCLUSIONS: CC-90011 is well tolerated, with the RP2D established as 60 mg once per week. The MTD and NTD were determined to be 80 mg once per week and 120 mg once per week, respectively. Further evaluation of CC-90011 is warranted.
Assuntos
Linfoma não Hodgkin/tratamento farmacológico , Neoplasias/tratamento farmacológico , Compostos Orgânicos/uso terapêutico , Adulto , Idoso , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Área Sob a Curva , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Fadiga/induzido quimicamente , Feminino , Humanos , Linfoma não Hodgkin/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Neoplasias/patologia , Compostos Orgânicos/efeitos adversos , Compostos Orgânicos/farmacocinética , Trombocitopenia/induzido quimicamente , Resultado do Tratamento , Adulto JovemRESUMO
Purpose: Despite the wide use of antiangiogenic drugs in the clinical setting, predictive biomarkers of response to these drugs are still unknown.Experimental Design: We applied whole-exome sequencing of matched germline and basal plasma cell-free DNA samples (WES-cfDNA) on a RAS/BRAF/PIK3CA wild-type metastatic colorectal cancer patient with primary resistance to standard treatment regimens, including inhibitors to the VEGF:VEGFR2 pathway. We performed extensive functional experiments, including ectopic expression of VEGFR2 mutants in different cell lines, kinase and drug sensitivity assays, and cell- and patient-derived xenografts.Results: WES-cfDNA yielded a 77% concordance rate with tumor exome sequencing and enabled the identification of the KDR/VEGFR2 L840F clonal, somatic mutation as the cause of therapy refractoriness in our patient. In addition, we found that 1% to 3% of samples from cancer sequencing projects harbor KDR somatic mutations located in protein residues frequently mutated in other cancer-relevant kinases, such as EGFR, ABL1, and ALK. Our in vitro and in vivo functional assays confirmed that L840F causes strong resistance to antiangiogenic drugs, whereas the KDR hot-spot mutant R1032Q confers sensitivity to strong VEGFR2 inhibitors. Moreover, we showed that the D717V, G800D, G800R, L840F, G843D, S925F, R1022Q, R1032Q, and S1100F VEGFR2 mutants promote tumor growth in mice.Conclusions: Our study supports WES-cfDNA as a powerful platform for portraying the somatic mutation landscape of cancer and discovery of new resistance mechanisms to cancer therapies. Importantly, we discovered that VEGFR2 is somatically mutated across tumor types and that VEGFR2 mutants can be oncogenic and control sensitivity/resistance to antiangiogenic drugs. Clin Cancer Res; 24(15); 3550-9. ©2018 AACR.
Assuntos
Inibidores da Angiogênese/administração & dosagem , Neoplasias Colorretais/genética , Neovascularização Patológica/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Quinase do Linfoma Anaplásico/genética , Inibidores da Angiogênese/efeitos adversos , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Receptores ErbB/genética , Exoma/genética , Feminino , Xenoenxertos , Humanos , Camundongos , Mutação , Neovascularização Patológica/sangue , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Conformação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-abl/genética , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/sangue , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Sequenciamento do ExomaRESUMO
Activation of cell surface death receptors of the tumor necrosis factor (TNF) receptor superfamily by the appropriate ligands represents an attractive therapeutic strategy to induce cell death by apoptosis in cancer cells. However, the toxic effects of TNF-alpha and CD95/Fas ligand (FasL) in normal tissues have significantly hampered the clinical application of these ligands in cancer treatment. TNF-related apoptosis-inducing ligand (TRAIL/APO-2L), another member of the TNF family, has been shown to induce apoptosis selectively in many tumor cell lines. Interestingly, TRAIL treatment also results in significant growth suppression of TRAIL-sensitive human cancer xenografts in mice and nonhuman primates. At the same time, recombinant TRAIL and agonistic TRAIL receptor antibodies show no significant cytotoxicity in these studies. Despite some adverse effects of certain TRAIL preparations, activation of proapoptotic TRAIL receptors represents a promising approach in cancer therapy. Herein we review what is known about proapoptotic TRAIL signaling, the role of intracellular survival pathways in the regulation of resistance to TRAIL and the activation of non-apoptotic signaling by TRAIL. We also discuss the role of the TRAIL system in tumorigenesis and the results of clinical trials with recombinant TRAIL and various TRAIL receptor agonistic antibodies, either as monotherapy or in combination with targeted or conventional chemotherapy.
Assuntos
Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Transformação Celular Neoplásica/metabolismo , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacosRESUMO
Resumen: OBJETIVO Determinar si el consumo de aguacate en pacientes con síndrome metabólico atenúa la disfunción endotelial, el estrés oxidativo y la inflamación inducida por el consumo de hamburguesa. MATERIAL Y MÉTODO Estudio experimental, longitudinal, prospectivo, con distribución al azar, cruzado, abierto pero ciego para los evaluadores de los desenlaces finales, efectuado de junio a agosto de 2018. Se incluyeron pacientes con síndrome metabólico que se clasificaron en dos grupos: al primer grupo se le dio a consumir carne de hamburguesa, mientras que al segundo grupo se le proporcionó la misma dieta adicionada con un aguacate. RESULTADOS Se reclutaron 14 pacientes (11 hombres y 3 mujeres) con síndrome metabólico. Al consumir hamburguesa disminuyeron las concentraciones de óxido nítrico en comparación cuando se añadió aguacate que inhibió este efecto (p < 0.05). Al consumir hamburguesa disminuyeron las concentraciones plasmáticas de lipoperoxidación, efecto que fue inhibido al agregar aguacate (p < 0.05). Al consumir hamburguesa las especies reactivas de oxígeno aumentaron su expresión en monocitos, efecto inhibido al adicionar aguacate a la dieta (p < 0.05). No se encontraron diferencias en los niveles de las moléculas de adhesión de CD11b, CD18 en granulocitos y en monocitos. CONCLUSIONES El aguacate de manera aguda bloquea la reducción de las concentraciones de óxido nítrico, disminuye la formación de especies reactivas de oxígeno y bloquea la reducción de la peroxidación de lípidos causada por la hamburguesa.
Abstract: OBJECTIVE To determinate if the ingestion of avocado in patients with metabolic syndrome diminishes endothelial dysfunction, oxidative stress and inflammation after ingesting hamburger meat. MATERIAL AND METHOD An experimental, longitudinal, randomized, prospective, crossed, open but blinded for outcomes evaluators trial was done from June to August 2018 in patients with metabolic syndrome in agreement to NCEP criteria. These patients were evaluated for endothelial function, inflammatory state and oxidative stress after two treatments: a hamburger meal and a hamburger meal plus avocado. RESULTS Fourteen patients with metabolic syndrome were included (11 men and 3 women). When ingesting hamburger meat, NO levels were raised compared when adding avocado that blunted this effect (p < 0.05). Hamburger decreased lipoperoxidation, effect that was inhibited by adding avocado (p < 0.05). The oxidative reactive species elevated their monocyte expression after hamburger ingestion; this effect was also inhibited by adding avocado (p < 0.05). No differences were found in the levels of adhesive molecules CD11b, CD18 in granulocytes and monocytes. CONCLUSIONS In an acute manner, avocado blocks the reduction of nitric oxide, diminishes formation of oxygen reactive species and blocks reduction of lipid peroxidation concentrations caused by a hamburger.