Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Am J Hum Genet ; 109(8): 1500-1519, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931052

RESUMO

Identifying causative gene(s) within disease-associated large genomic regions of copy-number variants (CNVs) is challenging. Here, by targeted sequencing of genes within schizophrenia (SZ)-associated CNVs in 1,779 SZ cases and 1,418 controls, we identified three rare putative loss-of-function (LoF) mutations in OTU deubiquitinase 7A (OTUD7A) within the 15q13.3 deletion in cases but none in controls. To tie OTUD7A LoF with any SZ-relevant cellular phenotypes, we modeled the OTUD7A LoF mutation, rs757148409, in human induced pluripotent stem cell (hiPSC)-derived induced excitatory neurons (iNs) by CRISPR-Cas9 engineering. The mutant iNs showed a ∼50% decrease in OTUD7A expression without undergoing nonsense-mediated mRNA decay. The mutant iNs also exhibited marked reduction of dendritic complexity, density of synaptic proteins GluA1 and PSD-95, and neuronal network activity. Congruent with the neuronal phenotypes in mutant iNs, our transcriptomic analysis showed that the set of OTUD7A LoF-downregulated genes was enriched for those relating to synapse development and function and was associated with SZ and other neuropsychiatric disorders. These results suggest that OTUD7A LoF impairs synapse development and neuronal function in human neurons, providing mechanistic insight into the possible role of OTUD7A in driving neuropsychiatric phenotypes associated with the 15q13.3 deletion.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Variações do Número de Cópias de DNA , Humanos , Neurônios , Esquizofrenia/metabolismo , Sinapses/metabolismo
2.
Arch Sex Behav ; 50(8): 3371-3375, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34080073

RESUMO

Male sexual orientation is a scientifically and socially important trait shown by family and twin studies to be influenced by environmental and complex genetic factors. Individual genome-wide linkage studies (GWLS) have been conducted, but not jointly analyzed. Two main datasets account for > 90% of the published GWLS concordant sibling pairs on the trait and are jointly analyzed here: MGSOSO (Molecular Genetic Study of Sexual Orientation; 409 concordant sibling pairs in 384 families, Sanders et al. (2015)) and Hamer (155 concordant sibling pairs in 145 families, Mustanski et al. (2005)). We conducted multipoint linkage analyses with Merlin on the datasets separately since they were genotyped differently, integrated genetic marker positions, and combined the resultant LOD (logarithm of the odds) scores at each 1 cM grid position. We continue to find the strongest linkage support at pericentromeric chromosome 8 and chromosome Xq28. We also incorporated the remaining published GWLS dataset (on 55 families) by using meta-analytic approaches on published summary statistics. The meta-analysis has maximized the positional information from GWLS of currently available family resources and can help prioritize findings from genome-wide association studies (GWAS) and other approaches. Although increasing evidence highlights genetic contributions to male sexual orientation, our current understanding of contributory loci is still limited, consistent with the complexity of the trait. Further increasing genetic knowledge about male sexual orientation, especially via large GWAS, should help advance our understanding of the biology of this important trait.


Assuntos
Genoma Humano , Estudo de Associação Genômica Ampla , Feminino , Ligação Genética , Humanos , Escore Lod , Masculino , Comportamento Sexual
3.
Arch Sex Behav ; 50(8): 3377-3383, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34518958

RESUMO

Male sexual orientation is influenced by environmental and complex genetic factors. Childhood gender nonconformity (CGN) is one of the strongest correlates of homosexuality with substantial familiality. We studied brothers in families with two or more homosexual brothers (409 concordant sibling pairs in 384 families, as well as their heterosexual brothers), who self-recalled their CGN. To map loci for CGN, we conducted a genome-wide linkage scan (GWLS) using SNP genotypes. The strongest linkage peaks, each with significant or suggestive two-point LOD scores and multipoint LOD score support, were on chromosomes 5q31 (maximum two-point LOD = 4.45), 6q12 (maximum two-point LOD = 3.64), 7q33 (maximum two-point LOD = 3.09), and 8q24 (maximum two-point LOD = 3.67), with the latter not overlapping with previously reported strongest linkage region for male sexual orientation on pericentromeric chromosome 8. Family-based association analyses were used to identify associated variants in the linkage regions, with a cluster of SNPs (minimum association p = 1.3 × 10-8) found at the 5q31 linkage peak. Genome-wide, clusters of multiple SNPs in the 10-6 to 10-8 p-value range were found at chromosomes 5p13, 5q31, 7q32, 8p22, and 10q23, highlighting glutamate-related genes. This is the first reported GWLS and genome-wide association study on CGN. Further increasing genetic knowledge about CGN and its relationships to male sexual orientation should help advance our understanding of the biology of these associated traits.


Assuntos
Identidade de Gênero , Estudo de Associação Genômica Ampla , Ligação Genética , Heterossexualidade , Homossexualidade Masculina/genética , Humanos , Masculino , Irmãos
4.
Arch Sex Behav ; 49(7): 2461-2468, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31950380

RESUMO

We examined whether recalled childhood gender nonconformity and self-reported adult gender nonconformity is familial, using data from 1154 families selected for having at least two homosexual brothers. Specifically, we examined the extent to which homosexual men's variation in gender nonconformity runs in families by examining pairs of genetic brothers who were both homosexual (N = 672-697 full sibling concordant pairs). We also examined similarity between homosexual and heterosexual brothers (N = 79-82 full sibling discordant pairs). Consistent with past studies, concordant pairs yielded modest positive correlations consistent with moderate genetic and/or familial environmental effects on gender nonconformity. Unlike results of smaller past studies, discordant pairs also yielded modest positive, though nonsignificant, correlations. Our results support the feasibility of supplementing genetic studies of male sexual orientation with analyses of gender nonconformity variation.


Assuntos
Identidade de Gênero , Heterossexualidade/psicologia , Homossexualidade Masculina/psicologia , Humanos , Masculino
5.
PLoS Genet ; 12(5): e1005993, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153221

RESUMO

Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally expressed imprinted genes in the contribution of Copy Number Variants (CNVs) at this interval to the incidence of psychotic illness. This work will have tangible benefits for patients with 15q11.2-q13.3 duplications by aiding genetic counseling.


Assuntos
Síndrome de Angelman/genética , Transtorno do Espectro Autista/genética , Herança Paterna/genética , Síndrome de Prader-Willi/genética , Esquizofrenia/genética , Síndrome de Angelman/patologia , Transtorno do Espectro Autista/patologia , Duplicação Cromossômica/genética , Cromossomos Humanos Par 15/genética , Variações do Número de Cópias de DNA/genética , Feminino , Impressão Genômica/genética , Humanos , Masculino , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Síndrome de Prader-Willi/patologia , Esquizofrenia/patologia
6.
PLoS Genet ; 12(12): e1006493, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28036406

RESUMO

Recent heritability analyses have indicated that genome-wide association studies (GWAS) have the potential to improve genetic risk prediction for complex diseases based on polygenic risk score (PRS), a simple modelling technique that can be implemented using summary-level data from the discovery samples. We herein propose modifications to improve the performance of PRS. We introduce threshold-dependent winner's-curse adjustments for marginal association coefficients that are used to weight the single-nucleotide polymorphisms (SNPs) in PRS. Further, as a way to incorporate external functional/annotation knowledge that could identify subsets of SNPs highly enriched for associations, we propose variable thresholds for SNPs selection. We applied our methods to GWAS summary-level data of 14 complex diseases. Across all diseases, a simple winner's curse correction uniformly led to enhancement of performance of the models, whereas incorporation of functional SNPs was beneficial only for selected diseases. Compared to the standard PRS algorithm, the proposed methods in combination led to notable gain in efficiency (25-50% increase in the prediction R2) for 5 of 14 diseases. As an example, for GWAS of type 2 diabetes, winner's curse correction improved prediction R2 from 2.29% based on the standard PRS to 3.10% (P = 0.0017) and incorporating functional annotation data further improved R2 to 3.53% (P = 2×10-5). Our simulation studies illustrate why differential treatment of certain categories of functional SNPs, even when shown to be highly enriched for GWAS-heritability, does not lead to proportionate improvement in genetic risk-prediction because of non-uniform linkage disequilibrium structure.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Herança Multifatorial/genética , Algoritmos , Simulação por Computador , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Fatores de Risco
7.
Hum Mol Genet ; 24(16): 4674-85, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26022996

RESUMO

We searched a gene expression dataset comprised of 634 schizophrenia (SZ) cases and 713 controls for expression outliers (i.e., extreme tails of the distribution of transcript expression values) with SZ cases overrepresented compared with controls. These outlier genes were enriched for brain expression and for genes known to be associated with neurodevelopmental disorders. SZ cases showed higher outlier burden (i.e., total outlier events per subject) than controls for genes within copy number variants (CNVs) associated with SZ or neurodevelopmental disorders. Outlier genes were enriched for CNVs and for rare putative regulatory variants, but this only explained a small proportion of the outlier subjects, highlighting the underlying presence of additional genetic and potentially, epigenetic mechanisms.


Assuntos
Epigênese Genética , Predisposição Genética para Doença , Variação Genética , Esquizofrenia , Transcriptoma , Feminino , Humanos , Masculino , Esquizofrenia/genética , Esquizofrenia/metabolismo
8.
Am J Hum Genet ; 95(6): 744-53, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25434007

RESUMO

Schizophrenia (SZ) genome-wide association studies (GWASs) have identified common risk variants in >100 susceptibility loci; however, the contribution of rare variants at these loci remains largely unexplored. One of the strongly associated loci spans MIR137 (miR137) and MIR2682 (miR2682), two microRNA genes important for neuronal function. We sequenced ∼6.9 kb MIR137/MIR2682 and upstream regulatory sequences in 2,610 SZ cases and 2,611 controls of European ancestry. We identified 133 rare variants with minor allele frequency (MAF) <0.5%. The rare variant burden in promoters and enhancers, but not insulators, was associated with SZ (p = 0.021 for MAF < 0.5%, p = 0.003 for MAF < 0.1%). A rare enhancer SNP, 1:g.98515539A>T, presented exclusively in 11 SZ cases (nominal p = 4.8 × 10(-4)). We further identified its risk allele T in 2 of 2,434 additional SZ cases, 11 of 4,339 bipolar (BP) cases, and 3 of 3,572 SZ/BP study controls and 1,688 population controls; yielding combined p values of 0.0007, 0.0013, and 0.0001 for SZ, BP, and SZ/BP, respectively. The risk allele T of 1:g.98515539A>T reduced enhancer activity of its flanking sequence by >50% in human neuroblastoma cells, predicting lower expression of MIR137/MIR2682. Both empirical and computational analyses showed weaker transcription factor (YY1) binding by the risk allele. Chromatin conformation capture (3C) assay further indicated that 1:g.98515539A>T influenced MIR137/MIR2682, but not the nearby DPYD or LOC729987. Our results suggest that rare noncoding risk variants are associated with SZ and BP at MIR137/MIR2682 locus, with risk alleles decreasing MIR137/MIR2682 expression.


Assuntos
Transtorno Bipolar/genética , Regulação da Expressão Gênica/genética , Variação Genética , MicroRNAs/genética , Esquizofrenia/genética , Alelos , Sequência de Bases , Linhagem Celular Tumoral , Frequência do Gene , Genes Reporter , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Risco , Análise de Sequência de DNA
9.
Nat Genet ; 40(9): 1053-5, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18677311

RESUMO

We carried out a genome-wide association study of schizophrenia (479 cases, 2,937 controls) and tested loci with P < 10(-5) in up to 16,726 additional subjects. Of 12 loci followed up, 3 had strong independent support (P < 5 x 10(-4)), and the overall pattern of replication was unlikely to occur by chance (P = 9 x 10(-8)). Meta-analysis provided strongest evidence for association around ZNF804A (P = 1.61 x 10(-7)) and this strengthened when the affected phenotype included bipolar disorder (P = 9.96 x 10(-9)).


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fatores de Transcrição Kruppel-Like/genética , Esquizofrenia/genética , Transtorno Bipolar/genética , Estudos de Casos e Controles , Mapeamento Cromossômico , Seguimentos , Humanos , Polimorfismo de Nucleotídeo Único
10.
Opt Express ; 24(4): 3663-71, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907023

RESUMO

We demonstrate a simple, scalable fabrication method for producing large-area arrays of vertically stacked metallic micro-rings, embedded in a deformable polymer sheet. Unusual polarisation-dependent hotspots are found to dominate the reflection images. To understand their origin, the arrays are characterized using point-scanning optical spectroscopy and directly compared to numerical simulations. Individual ring stacks act as microlenses, while polarisation-dependent hotspots arise at the connections between neighbouring stacks, which are comprised of parabolically-arranged parallel gold nanowires. The elastomeric properties of the polymer host opens the door to active control of the optics of this photonic material, through dynamic tuning of the nanowire spacings and array geometry.

11.
Nano Lett ; 15(1): 669-74, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25494169

RESUMO

Gold nanoparticles are separated above a planar gold film by 1.1 nm thick self-assembled molecular monolayers of different conductivities. Incremental replacement of the nonconductive molecules with a chemically equivalent conductive version differing by only one atom produces a strong 50 nm blue-shift of the coupled plasmon. With modeling this gives a conductance of 0.17G(0) per biphenyl-4,4'-dithiol molecule and a total conductance across the plasmonic junction of 30G(0). Our approach provides a reliable tool quantifying the number of molecules in each plasmonic hotspot, here <200.

12.
Hum Mol Genet ; 22(24): 5001-14, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23904455

RESUMO

Schizophrenia genome-wide association studies (GWAS) have identified common SNPs, rare copy number variants (CNVs) and a large polygenic contribution to illness risk, but biological mechanisms remain unclear. Bioinformatic analyses of significantly associated genetic variants point to a large role for regulatory variants. To identify gene expression abnormalities in schizophrenia, we generated whole-genome gene expression profiles using microarrays on lymphoblastoid cell lines (LCLs) from 413 cases and 446 controls. Regression analysis identified 95 transcripts differentially expressed by affection status at a genome-wide false discovery rate (FDR) of 0.05, while simultaneously controlling for confounding effects. These transcripts represented 89 genes with functions such as neurotransmission, gene regulation, cell cycle progression, differentiation, apoptosis, microRNA (miRNA) processing and immunity. This functional diversity is consistent with schizophrenia's likely significant pathophysiological heterogeneity. The overall enrichment of immune-related genes among those differentially expressed by affection status is consistent with hypothesized immune contributions to schizophrenia risk. The observed differential expression of extended major histocompatibility complex (xMHC) region histones (HIST1H2BD, HIST1H2BC, HIST1H2BH, HIST1H2BG and HIST1H4K) converges with the genetic evidence from GWAS, which find the xMHC to be the most significant susceptibility locus. Among the differentially expressed immune-related genes, B3GNT2 is implicated in autoimmune disorders previously tied to schizophrenia risk (rheumatoid arthritis and Graves' disease), and DICER1 is pivotal in miRNA processing potentially linking to miRNA alterations in schizophrenia (e.g. MIR137, the second strongest GWAS finding). Our analysis provides novel candidate genes for further study to assess their potential contribution to schizophrenia.


Assuntos
Regulação da Expressão Gênica , Esquizofrenia/genética , Transcriptoma , Adulto , Estudos de Casos e Controles , Linhagem Celular , Feminino , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Esquizofrenia/metabolismo , Transdução de Sinais
13.
Nature ; 460(7256): 753-7, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19571809

RESUMO

Schizophrenia, a devastating psychiatric disorder, has a prevalence of 0.5-1%, with high heritability (80-85%) and complex transmission. Recent studies implicate rare, large, high-penetrance copy number variants in some cases, but the genes or biological mechanisms that underlie susceptibility are not known. Here we show that schizophrenia is significantly associated with single nucleotide polymorphisms (SNPs) in the extended major histocompatibility complex region on chromosome 6. We carried out a genome-wide association study of common SNPs in the Molecular Genetics of Schizophrenia (MGS) case-control sample, and then a meta-analysis of data from the MGS, International Schizophrenia Consortium and SGENE data sets. No MGS finding achieved genome-wide statistical significance. In the meta-analysis of European-ancestry subjects (8,008 cases, 19,077 controls), significant association with schizophrenia was observed in a region of linkage disequilibrium on chromosome 6p22.1 (P = 9.54 x 10(-9)). This region includes a histone gene cluster and several immunity-related genes--possibly implicating aetiological mechanisms involving chromatin modification, transcriptional regulation, autoimmunity and/or infection. These results demonstrate that common schizophrenia susceptibility alleles can be detected. The characterization of these signals will suggest important directions for research on susceptibility mechanisms.


Assuntos
Cromossomos Humanos Par 6/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Alelos , Estudos de Casos e Controles , Europa (Continente)/etnologia , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação/genética , Complexo Principal de Histocompatibilidade/genética , Esquizofrenia/imunologia
14.
Annu Rev Genomics Hum Genet ; 12: 121-44, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21639796

RESUMO

The work conducted using genome-wide approaches during the past several years has invigorated the field, and represents the dawn of molecular genetics of schizophrenia. The aggregate data increasingly support a combination of rare and common genetic variation in schizophrenia, a major role for polygenic inheritance, and a genetic overlap of schizophrenia and other psychiatric disorders, such as bipolar disorder and autism. The current and upcoming resequencing programs (full exomes to full genomes), in combination with the use of more informative genotyping arrays, will allow a more thorough dissection of the molecular genetics of the disorder. A main challenge for the field is the translation of established genetic associations into a better pathophysiological understanding of schizophrenia.


Assuntos
Esquizofrenia/genética , Adoção , Pleiotropia Genética , Estudo de Associação Genômica Ampla , Humanos , Transtornos Mentais/genética , Estudos em Gêmeos como Assunto
15.
medRxiv ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39399044

RESUMO

To assess the relationship between lipids and cognitive dysfunction, we retrospectively analyzed blood-lipid levels in clinically well-characterized individuals with stable mild cognitive impairment (MCI) or Alzheimer's disease (AD) over the decade prior to first cognitive symptoms. In this case/control cohort study, AD and MCI cases were diagnosed using DSM-IV criteria; MCI cases had not progressed to dementia for ≥5 years; and controls were propensity matched to cases at age of symptom onset (MCI: 116 cases, 435 controls; AD: 215 cases, 483 controls). Participants were grouped based on longitudinal trajectories and quintile of variability independent of the mean (VIM) for total cholesterol, HDL-C, LDL-C, non-HDL-C and ln(triglycerides). Models for the risk of cognitive dysfunction evaluated trajectory and VIM groups, APOE genotype, polygenic risk scores (PRS) for AD and lipid levels, age, comorbidities, and longitudinal correlates of blood-lipid concentrations. Lower HDL-C trajectories (OR = 3.8, 95% CI = 1.3-11.3) and the lowest VIM quintile of non-HDL-C (OR = 2.2, 95% CI = 1.3-3.0) were associated with higher MCI risk. Lower HDL-C trajectories (OR = 3.0, 95% CI = 1.6-5.7) and the lowest VIM quintile of total cholesterol (OR = 2.4, 95% CI = 1.5-3.9) were associated with higher AD risk. The inclusion of lipid-trajectory and VIM groups improved risk-model predictive performance independent of APOE genotype or PRS for AD and lipid levels. These results provide an important real-world perspective on the influence of lipid metabolism and blood-lipid levels on the development of stable MCI and AD.

16.
medRxiv ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39185522

RESUMO

Genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified a plethora of risk loci. However, the disease variants/genes and the underlying mechanisms remain largely unknown. For a strong AD-associated locus near Clusterin (CLU), we tied an AD protective allele to a role of neuronal CLU in promoting neuron excitability through lipid-mediated neuron-glia communication. We identified a putative causal SNP of CLU that impacts neuron-specific chromatin accessibility to transcription-factor(s), with the AD protective allele upregulating neuronal CLU and promoting neuron excitability. Transcriptomic analysis and functional studies in induced pluripotent stem cell (iPSC)-derived neurons co-cultured with mouse astrocytes show that neuronal CLU facilitates neuron-to-glia lipid transfer and astrocytic lipid droplet formation coupled with reactive oxygen species (ROS) accumulation. These changes cause astrocytes to uptake less glutamate thereby altering neuron excitability. Our study provides insights into how CLU confers resilience to AD through neuron-glia interactions.

17.
J Diabetes Investig ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171755

RESUMO

Atypical diabetes with overlapping clinical features of type 1 (T1D) and type 2 (T2D) is common and challenging diagnostically and for implementing effective treatment. Here, we validate a recently reported genetic probability of type 1 diabetes (GenProb-T1D) from the UK Biobank (UKB) for differentiating type 1 diabetes and type 2 diabetes in a diabetes patient cohort from a healthcare system-based biobank in the USA. Among 3,363 diabetes patients, we confirmed the performance of GenProb-T1D in differentiating typical type 1 diabetes vs type 2 diabetes. Furthermore, for 359 atypical diabetes patients, those with GenProb-T1D higher than the pre-defined cutoff derived from the UKB had clinical presentations more consistent with that of typical type 1 diabetes. Similar findings were found in participants of European and non-European ancestries. This study provides necessary validation to translate GenProb-T1D into genetic testing in a multi-ancestry cohort. Measuring underlying genetic susceptibility of type 1 diabetes and type 2 diabetes can supplement current clinical tools for earlier and more accurate diagnoses of diabetes.

18.
Res Sq ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38826437

RESUMO

Despite genome-wide association studies of late-onset Alzheimer's disease (LOAD) having identified many genetic risk loci1-6, the underlying disease mechanisms remain largely unknown. Determining causal disease variants and their LOAD-relevant cellular phenotypes has been a challenge. Leveraging our approach for identifying functional GWAS risk variants showing allele-specific open chromatin (ASoC)7, we systematically identified putative causal LOAD risk variants in human induced pluripotent stem cells (iPSC)-derived neurons, astrocytes, and microglia (MG) and linked PICALM risk allele to a previously unappreciated MG-specific role of PICALM in lipid droplet (LD) accumulation. ASoC mapping uncovered functional risk variants for 26 LOAD risk loci, mostly MG-specific. At the MG-specific PICALM locus, the LOAD risk allele of rs10792832 reduced transcription factor (PU.1) binding and PICALM expression, impairing the uptake of amyloid beta (Aß) and myelin debris. Interestingly, MG with PICALM risk allele showed transcriptional enrichment of pathways for cholesterol synthesis and LD formation. Genetic and pharmacological perturbations of MG further established a causal link between the reduced PICALM expression, LD accumulation, and phagocytosis deficits. Our work elucidates the selective LOAD vulnerability in microglia for the PICALM locus through detrimental LD accumulation, providing a neurobiological basis that can be exploited for developing novel clinical interventions.

19.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562852

RESUMO

Translating genetic findings for neurodevelopmental and psychiatric disorders (NPD) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, here we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop-codons (iSTOP) that lead to mRNA nonsense-mediated-decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 NPD genes. Using RNAseq, we confirmed their pluripotency, absence of chromosomal abnormalities, and NMD. Interestingly, for three schizophrenia risk genes (SETD1A, TRIO, CUL1), despite the high efficiency of base editing, we only obtained heterozygous LoF alleles, suggesting their essential roles for cell growth. We replicated the reported neural phenotypes of SHANK3-haploinsufficiency and found CUL1-LoF reduced neurite branches and synaptic puncta density. This iSTOP pipeline enables a scaled and efficient LoF mutagenesis of NPD genes, yielding an invaluable shareable resource.

20.
Stem Cell Reports ; 19(10): 1489-1504, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39270650

RESUMO

Translating genetic findings for neurodevelopmental and psychiatric disorders (NPDs) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop codons (iSTOP) that lead to mRNA nonsense-mediated decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 genes. Using RNA sequencing (RNA-seq), we confirmed their pluripotency, absence of chromosomal abnormalities, and NMD. Despite high editing efficiency, three schizophrenia risk genes (SETD1A, TRIO, and CUL1) only had heterozygous LoF alleles, suggesting their essential roles for cell growth. We found that CUL1-LoF reduced neurite branches and synaptic puncta density. This iSTOP pipeline enables a scaled and efficient LoF mutagenesis of NPD genes, yielding an invaluable shareable resource.


Assuntos
Alelos , Células-Tronco Pluripotentes Induzidas , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Transtornos do Neurodesenvolvimento/genética , Transtornos Mentais/genética , Edição de Genes , Degradação do RNAm Mediada por Códon sem Sentido , Mutagênese , Códon sem Sentido , Predisposição Genética para Doença , Sistemas CRISPR-Cas , Proteínas Culina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA