Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Immunity ; 55(4): 718-733.e8, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35349789

RESUMO

Resident memory B (BRM) cells develop and persist in the lungs of influenza-infected mice and humans; however, their contribution to recall responses has not been defined. Here, we used two-photon microscopy to visualize BRM cells within the lungs of influenza -virus immune and reinfected mice. Prior to re-exposure, BRM cells were sparsely scattered throughout the tissue, displaying limited motility. Within 24 h of rechallenge, these cells increased their migratory capacity, localized to infected sites, and subsequently differentiated into plasma cells. Alveolar macrophages mediated this process, in part by inducing expression of chemokines CXCL9 and CXCL10 from infiltrating inflammatory cells. This led to the recruitment of chemokine receptor CXCR3-expressing BRM cells to infected regions and increased local antibody concentrations. Our study uncovers spatiotemporal mechanisms that regulate lung BRM cell reactivation and demonstrates their capacity to rapidly deliver antibodies in a highly localized manner to sites of viral replication.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Anticorpos , Humanos , Memória Imunológica , Células B de Memória , Camundongos
2.
Immunity ; 50(2): 432-445.e7, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30683619

RESUMO

Host microbial cross-talk is essential to maintain intestinal homeostasis. However, maladaptation of this response through microbial dysbiosis or defective host defense toward invasive intestinal bacteria can result in chronic inflammation. We have shown that macrophages differentiated in the presence of the bacterial metabolite butyrate display enhanced antimicrobial activity. Butyrate-induced antimicrobial activity was associated with a shift in macrophage metabolism, a reduction in mTOR kinase activity, increased LC3-associated host defense and anti-microbial peptide production in the absence of an increased inflammatory cytokine response. Butyrate drove this monocyte to macrophage differentiation program through histone deacetylase 3 (HDAC3) inhibition. Administration of butyrate induced antimicrobial activity in intestinal macrophages in vivo and increased resistance to enteropathogens. Our data suggest that (1) increased intestinal butyrate might represent a strategy to bolster host defense without tissue damaging inflammation and (2) that pharmacological HDAC3 inhibition might drive selective macrophage functions toward antimicrobial host defense.


Assuntos
Anti-Infecciosos/farmacologia , Butiratos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Animais , Diferenciação Celular/genética , Células Cultivadas , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/microbiologia , Citocinas/genética , Citocinas/metabolismo , Disbiose/microbiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Monócitos/metabolismo , Monócitos/microbiologia
3.
Nature ; 570(7760): 246-251, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31142839

RESUMO

The identification of lymphocyte subsets with non-overlapping effector functions has been pivotal to the development of targeted therapies in immune-mediated inflammatory diseases (IMIDs)1,2. However, it remains unclear whether fibroblast subclasses with non-overlapping functions also exist and are responsible for the wide variety of tissue-driven processes observed in IMIDs, such as inflammation and damage3-5. Here we identify and describe the biology of distinct subsets of fibroblasts responsible for mediating either inflammation or tissue damage in arthritis. We show that deletion of fibroblast activation protein-α (FAPα)+ fibroblasts suppressed both inflammation and bone erosions in mouse models of resolving and persistent arthritis. Single-cell transcriptional analysis identified two distinct fibroblast subsets within the FAPα+ population: FAPα+THY1+ immune effector fibroblasts located in the synovial sub-lining, and FAPα+THY1- destructive fibroblasts restricted to the synovial lining layer. When adoptively transferred into the joint, FAPα+THY1- fibroblasts selectively mediate bone and cartilage damage with little effect on inflammation, whereas transfer of FAPα+ THY1+ fibroblasts resulted in a more severe and persistent inflammatory arthritis, with minimal effect on bone and cartilage. Our findings describing anatomically discrete, functionally distinct fibroblast subsets with non-overlapping functions have important implications for cell-based therapies aimed at modulating inflammation and tissue damage.


Assuntos
Artrite Reumatoide/patologia , Fibroblastos/patologia , Animais , Osso e Ossos/patologia , Endopeptidases , Feminino , Fibroblastos/classificação , Fibroblastos/metabolismo , Gelatinases/metabolismo , Humanos , Inflamação/patologia , Articulações/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , RNA-Seq , Serina Endopeptidases/metabolismo , Análise de Célula Única , Membrana Sinovial/patologia , Antígenos Thy-1/metabolismo
4.
Genome Res ; 31(11): 2022-2034, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34649931

RESUMO

Thymic epithelial cells (TEC) control the selection of a T cell repertoire reactive to pathogens but tolerant of self. This process is known to involve the promiscuous expression of virtually the entire protein-coding gene repertoire, but the extent to which TEC recapitulate peripheral isoforms, and the mechanisms by which they do so, remain largely unknown. We performed the first assembly-based transcriptomic census of transcript structures and splicing factor (SF) expression in mouse medullary TEC (mTEC) and 21 peripheral tissues. Mature mTEC expressed 60.1% of all protein-coding transcripts, more than was detected in any of the peripheral tissues. However, for genes with tissue-restricted expression, mTEC produced fewer isoforms than did the relevant peripheral tissues. Analysis of exon inclusion revealed an absence of brain-specific microexons in mTEC. We did not find unusual numbers of novel transcripts in TEC, and we show that Aire, the facilitator of promiscuous gene expression, promotes the generation of long "classical" transcripts (with 5' and 3' UTRs) but has only a limited impact on alternative splicing in mTEC. Comprehensive assessment of SF expression in mTEC identified a small set of nonpromiscuously expressed SF genes, among which we confirmed RBFOX to be present with AIRE in mTEC nuclei. Using a conditional loss-of-function approach, we show that Rbfox2 promotes mTEC development and regulates the alternative splicing of promiscuously expressed genes. These data indicate that TEC recommission a small number of peripheral SFs, including members of the RBFOX family, to generate a broad but selective representation of the peripheral splice isoform repertoire.


Assuntos
Perfilação da Expressão Gênica , Splicing de RNA , Animais , Diferenciação Celular/genética , Células Epiteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Timo/metabolismo , Transcriptoma
5.
J Cell Sci ; 133(13)2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32503942

RESUMO

Complex inflammatory signalling cascades define the response to tissue injury but also control development and homeostasis, limiting the potential for these pathways to be targeted therapeutically. Primary cilia are subcellular regulators of cellular signalling, controlling how signalling is organized, encoded and, in some instances, driving or influencing pathogenesis. Our previous research revealed that disruption of ciliary intraflagellar transport (IFT), altered the cell response to IL-1ß, supporting a putative link emerging between cilia and inflammation. Here, we show that IFT88 depletion affects specific cytokine-regulated behaviours, changing cytosolic NFκB translocation dynamics but leaving MAPK signalling unaffected. RNA-seq analysis indicates that IFT88 regulates one third of the genome-wide targets, including the pro-inflammatory genes Nos2, Il6 and Tnf Through microscopy, we find altered NFκB dynamics are independent of assembly of a ciliary axoneme. Indeed, depletion of IFT88 inhibits inflammatory responses in the non-ciliated macrophage. We propose that ciliary proteins, including IFT88, KIF3A, TTBK2 and NPHP4, act outside of the ciliary axoneme to tune cytoplasmic NFκB signalling and specify the downstream cell response. This is thus a non-canonical function for ciliary proteins in shaping cellular inflammation.This article has an associated First Person interview with the first author of the paper.


Assuntos
Cílios , Transdução de Sinais , Cílios/metabolismo , Flagelos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transporte Proteico
6.
Gut ; 70(6): 1023-1036, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33037057

RESUMO

OBJECTIVE: Dysregulated immune responses are the cause of IBDs. Studies in mice and humans suggest a central role of interleukin (IL)-23-producing mononuclear phagocytes in disease pathogenesis. Mechanistic insights into the regulation of IL-23 are prerequisite for selective IL-23 targeting therapies as part of personalised medicine. DESIGN: We performed transcriptomic analysis to investigate IL-23 expression in human mononuclear phagocytes and peripheral blood mononuclear cells. We investigated the regulation of IL-23 expression and used single-cell RNA sequencing to derive a transcriptomic signature of hyperinflammatory monocytes. Using gene network correlation analysis, we deconvolved this signature into components associated with homeostasis and inflammation in patient biopsy samples. RESULTS: We characterised monocyte subsets of healthy individuals and patients with IBD that express IL-23. We identified autosensing and paracrine sensing of IL-1α/IL-1ß and IL-10 as key cytokines that control IL-23-producing monocytes. Whereas Mendelian genetic defects in IL-10 receptor signalling induced IL-23 secretion after lipopolysaccharide stimulation, whole bacteria exposure induced IL-23 production in controls via acquired IL-10 signalling resistance. We found a transcriptional signature of IL-23-producing inflammatory monocytes that predicted both disease and resistance to antitumour necrosis factor (TNF) therapy and differentiated that from an IL-23-associated lymphocyte differentiation signature that was present in homeostasis and in disease. CONCLUSION: Our work identifies IL-10 and IL-1 as critical regulators of monocyte IL-23 production. We differentiate homeostatic IL-23 production from hyperinflammation-associated IL-23 production in patients with severe ulcerating active Crohn's disease and anti-TNF treatment non-responsiveness. Altogether, we identify subgroups of patients with IBD that might benefit from IL-23p19 and/or IL-1α/IL-1ß-targeting therapies upstream of IL-23.


Assuntos
Resistência a Medicamentos/genética , Doenças Inflamatórias Intestinais/genética , Interleucina-10/genética , Subunidade p19 da Interleucina-23/biossíntese , Subunidade p19 da Interleucina-23/genética , Monócitos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Comunicação Autócrina , Células Cultivadas , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Homeostase/genética , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Interleucina-10/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Comunicação Parácrina , Receptores de Interleucina-10/antagonistas & inibidores , Receptores de Interleucina-10/metabolismo , Transdução de Sinais/genética , Transcriptoma , Fator de Necrose Tumoral alfa/efeitos adversos , Adulto Jovem
7.
Blood ; 130(23): 2504-2515, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-28972012

RESUMO

T-cell differentiation is governed by interactions with thymic epithelial cells (TECs) and defects in this process undermine immune function and tolerance. To uncover new strategies to restore thymic function and adaptive immunity in immunodeficiency, we sought to determine the molecular mechanisms that control life and death decisions in TECs. Guided by gene expression profiling, we created mouse models that specifically deleted prosurvival genes in TECs. We found that although BCL-2 and BCL-XL were dispensable for TEC homeostasis, MCL-1 deficiency impacted on TECs as early as embryonic day 15.5, resulting in early thymic atrophy and T-cell lymphopenia, with near complete loss of thymic tissue by 2 months of age. MCL-1 was not necessary for TEC differentiation but was continually required for the survival of mature cortical and medullary TECs and the maintenance of thymic architecture. A screen of TEC trophic factors in organ cultures showed that epidermal growth factor upregulated MCL-1 via MAPK/ERK kinase activity, providing a molecular mechanism for the support of TEC survival. This signaling axis governing TEC survival and thymic function represents a new target for strategies for thymic protection and regeneration.


Assuntos
Sobrevivência Celular/genética , Células Epiteliais/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Timo/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Sobrevivência Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/efeitos dos fármacos , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Homeostase/genética , Imunofenotipagem , Linfopenia/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/imunologia , Timócitos/metabolismo , Timo/patologia , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
8.
Circulation ; 136(12): 1140-1154, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28698173

RESUMO

BACKGROUND: Myeloid cells are central to atherosclerotic lesion development and vulnerable plaque formation. Impaired ability of arterial phagocytes to uptake apoptotic cells (efferocytosis) promotes lesion growth and establishment of a necrotic core. The transcription factor interferon regulatory factor (IRF)-5 is an important modulator of myeloid function and programming. We sought to investigate whether IRF5 affects the formation and phenotype of atherosclerotic lesions. METHODS: We investigated the role of IRF5 in atherosclerosis in 2 complementary models. First, atherosclerotic lesion development in hyperlipidemic apolipoprotein E-deficient (ApoE-/-) mice and ApoE-/- mice with a genetic deletion of IRF5 (ApoE-/-Irf5-/-) was compared and then lesion development was assessed in a model of shear stress-modulated vulnerable plaque formation. RESULTS: Both lesion and necrotic core size were significantly reduced in ApoE-/-Irf5-/- mice compared with IRF5-competent ApoE-/- mice. Necrotic core size was also reduced in the model of shear stress-modulated vulnerable plaque formation. A significant loss of CD11c+ macrophages was evident in ApoE-/-Irf5-/- mice in the aorta, draining lymph nodes, and bone marrow cell cultures, indicating that IRF5 maintains CD11c+ macrophages in atherosclerosis. Moreover, we revealed that the CD11c gene is a direct target of IRF5 in macrophages. In the absence of IRF5, CD11c- macrophages displayed a significant increase in expression of the efferocytosis-regulating integrin-ß3 and its ligand milk fat globule-epidermal growth factor 8 protein and enhanced efferocytosis in vitro and in situ. CONCLUSIONS: IRF5 is detrimental in atherosclerosis by promoting the maintenance of proinflammatory CD11c+ macrophages within lesions and controlling the expansion of the necrotic core by impairing efferocytosis.


Assuntos
Aterosclerose/patologia , Fatores Reguladores de Interferon/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Células Cultivadas , Imuno-Histoquímica , Integrina beta3/metabolismo , Fatores Reguladores de Interferon/deficiência , Fatores Reguladores de Interferon/genética , Linfonodos/citologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose , Fagocitose , Resistência ao Cisalhamento
9.
EMBO J ; 33(4): 296-311, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24488179

RESUMO

Although some long noncoding RNAs (lncRNAs) have been shown to regulate gene expression in cis, it remains unclear whether lncRNAs can directly regulate transcription in trans by interacting with chromatin genome-wide independently of their sites of synthesis. Here, we describe the genomically local and more distal functions of Paupar, a vertebrate-conserved and central nervous system-expressed lncRNA transcribed from a locus upstream of the gene encoding the PAX6 transcription factor. Knockdown of Paupar disrupts the normal cell cycle profile of neuroblastoma cells and induces neural differentiation. Paupar acts in a transcript-dependent manner both locally, to regulate Pax6, as well as distally by binding and regulating genes on multiple chromosomes, in part through physical association with PAX6 protein. Paupar binding sites are enriched near promoters and can function as transcriptional regulatory elements whose activity is modulated by Paupar transcript levels. Our findings demonstrate that a lncRNA can function in trans at transcriptional regulatory elements distinct from its site of synthesis to control large-scale transcriptional programmes.


Assuntos
Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Fatores de Transcrição Box Pareados/genética , RNA Longo não Codificante/fisiologia , Proteínas Repressoras/genética , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/metabolismo , Sequência Conservada , Proteínas do Olho/biossíntese , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes cdc , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/biossíntese , Camundongos , Proteínas do Tecido Nervoso/genética , Neuroblastoma/patologia , Neurogênese , Neurônios/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/biossíntese , Ligação Proteica , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/farmacologia , Elementos Reguladores de Transcrição , Proteínas Repressoras/biossíntese , Transcrição Gênica , Transfecção
10.
Eur J Immunol ; 46(4): 846-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26694097

RESUMO

Intrathymic T-cell development is critically dependent on cortical and medullary thymic epithelial cells (TECs). Both epithelial subsets originate during early thymus organogenesis from progenitor cells that express the thymoproteasome subunit ß5t, a typical feature of cortical TECs. Using in vivo lineage fate mapping, we demonstrate in mice that ß5t(+) TEC progenitors give rise to the medullary TEC compartment early in life but significantly limit their contribution once the medulla has completely formed. Lineage-tracing studies at single cell resolution demonstrate for young mice that the postnatal medulla is expanded from individual ß5t(+) cortical progenitors located at the cortico-medullary junction. These results therefore not only define a developmental window during which the expansion of medulla is efficiently enabled by progenitors resident in the thymic cortex, but also reveal the spatio-temporal dynamics that control the growth of the thymic medulla.


Assuntos
Células Epiteliais/citologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Linfócitos T/citologia , Timo/citologia , Timo/embriologia , Animais , Diferenciação Celular , Linhagem da Célula/imunologia , Proliferação de Células , Doxiciclina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organogênese/fisiologia , Células-Tronco/citologia , Linfócitos T/imunologia
11.
Genome Res ; 24(12): 1918-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224068

RESUMO

Promiscuous gene expression (PGE) by thymic epithelial cells (TEC) is essential for generating a diverse T cell antigen receptor repertoire tolerant to self-antigens, and thus for avoiding autoimmunity. Nevertheless, the extent and nature of this unusual expression program within TEC populations and single cells are unknown. Using deep transcriptome sequencing of carefully identified mouse TEC subpopulations, we discovered a program of PGE that is common between medullary (m) and cortical TEC, further elaborated in mTEC, and completed in mature mTEC expressing the autoimmune regulator gene (Aire). TEC populations are capable of expressing up to 19,293 protein-coding genes, the highest number of genes known to be expressed in any cell type. Remarkably, in mouse mTEC, Aire expression alone positively regulates 3980 tissue-restricted genes. Notably, the tissue specificities of these genes include known targets of autoimmunity in human AIRE deficiency. Led by the observation that genes induced by Aire expression are generally characterized by a repressive chromatin state in somatic tissues, we found these genes to be strongly associated with H3K27me3 marks in mTEC. Our findings are consistent with AIRE targeting and inducing the promiscuous expression of genes previously epigenetically silenced by Polycomb group proteins. Comparison of the transcriptomes of 174 single mTEC indicates that genes induced by Aire expression are transcribed stochastically at low cell frequency. Furthermore, when present, Aire expression-dependent transcript levels were 16-fold higher, on average, in individual TEC than in the mTEC population.


Assuntos
Autoantígenos/genética , Células Epiteliais/metabolismo , Inativação Gênica , Proteínas do Grupo Polycomb/genética , Timo/citologia , Timo/metabolismo , Fatores de Transcrição/genética , Acetilação , Animais , Autoantígenos/imunologia , Cromatina/genética , Cromatina/metabolismo , Análise por Conglomerados , Biologia Computacional , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ordem dos Genes , Marcação de Genes , Loci Gênicos , Vetores Genéticos/genética , Genômica/métodos , Histonas/metabolismo , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/genética , Proteínas do Grupo Polycomb/metabolismo , Transdução de Sinais , Análise de Célula Única , Timo/imunologia , Fatores de Transcrição/metabolismo , Transcriptoma , Proteína AIRE
12.
Bioinformatics ; 30(9): 1290-1, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24395753

RESUMO

Computational genomics seeks to draw biological inferences from genomic datasets, often by integrating and contextualizing next-generation sequencing data. CGAT provides an extensive suite of tools designed to assist in the analysis of genome scale data from a range of standard file formats. The toolkit enables filtering, comparison, conversion, summarization and annotation of genomic intervals, gene sets and sequences. The tools can both be run from the Unix command line and installed into visual workflow builders, such as Galaxy.


Assuntos
Genômica/métodos , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Software , Fluxo de Trabalho
13.
Nat Commun ; 15(1): 1394, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374174

RESUMO

Frozen shoulder is a spontaneously self-resolving chronic inflammatory fibrotic human disease, which distinguishes the condition from most fibrotic diseases that are progressive and irreversible. Using single-cell analysis, we identify pro-inflammatory MERTKlowCD48+ macrophages and MERTK + LYVE1 + MRC1+ macrophages enriched for negative regulators of inflammation which co-exist in frozen shoulder capsule tissues. Micro-cultures of patient-derived cells identify integrin-mediated cell-matrix interactions between MERTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts, suggesting that matrix remodelling plays a role in frozen shoulder resolution. Cross-tissue analysis reveals a shared gene expression cassette between shoulder capsule MERTK+ macrophages and a respective population enriched in synovial tissues of rheumatoid arthritis patients in disease remission, supporting the concept that MERTK+ macrophages mediate resolution of inflammation and fibrosis. Single-cell transcriptomic profiling and spatial analysis of human foetal shoulder tissues identify MERTK + LYVE1 + MRC1+ macrophages and DKK3+ and POSTN+ fibroblast populations analogous to those in frozen shoulder, suggesting that the template to resolve fibrosis is established during shoulder development. Crosstalk between MerTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts could facilitate resolution of frozen shoulder, providing a basis for potential therapeutic resolution of persistent fibrotic diseases.


Assuntos
Bursite , Humanos , c-Mer Tirosina Quinase/metabolismo , Inflamação/metabolismo , Membrana Sinovial/metabolismo , Fibrose
14.
Proc Natl Acad Sci U S A ; 107(36): 15957-62, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20798045

RESUMO

Multipotent progenitor cells of the cerebral cortex balance self-renewal and differentiation to produce complex neural lineages in a fixed temporal order in a cell-autonomous manner. We studied the role of the polycomb epigenetic system, a chromatin-based repressive mechanism, in controlling cortical progenitor cell self-renewal and differentiation. We found that the histone methyltransferase of polycomb repressive complex 2 (PCR2), enhancer of Zeste homolog 2 (Ezh2), is essential for controlling the rate at which development progresses within cortical progenitor cell lineages. Loss of function of Ezh2 removes the repressive mark of trimethylated histone H3 at lysine 27 (H3K27me3) in cortical progenitor cells and also prevents its establishment in postmitotic neurons. Removal of this repressive chromatin modification results in marked up-regulation in gene expression, the consequence of which is a shift in the balance between self-renewal and differentiation toward differentiation, both directly to neurons and indirectly via basal progenitor cell genesis. Although the temporal order of neurogenesis and gliogenesis are broadly conserved under these conditions, the timing of neurogenesis, the relative numbers of different cell types, and the switch to gliogenesis are all altered, narrowing the neurogenic period for progenitor cells and reducing their neuronal output. As a consequence, the timing of cortical development is altered significantly after loss of PRC2 function.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebral/citologia , Histona-Lisina N-Metiltransferase/fisiologia , Concentração de Íons de Hidrogênio , Neurogênese , Animais , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste , Histonas/química , Histonas/metabolismo , Camundongos , Complexo Repressor Polycomb 2 , Regulação para Cima
15.
Nat Commun ; 14(1): 321, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658158

RESUMO

IFNγ is an immune mediator with concomitant pro- and anti-tumor functions. Here, we provide evidence that IFNγ directly acts on intra-tumoral CD8 T cells to restrict anti-tumor responses. We report that expression of the IFNγ receptor ß chain (IFNγR2) in CD8 T cells negatively correlates with clinical responsiveness to checkpoint blockade in metastatic melanoma patients, suggesting that the loss of sensitivity to IFNγ contributes to successful antitumor immunity. Indeed, specific deletion of IFNγR in CD8 T cells promotes tumor control in a mouse model of melanoma. Chronic IFNγ inhibits the maintenance, clonal diversity and proliferation of stem-like T cells. This leads to decreased generation of T cells with intermediate expression of exhaustion markers, previously associated with beneficial anti-tumor responses. This study provides evidence of a negative feedback loop whereby IFNγ depletes stem-like T cells to restrict anti-tumor immunity. Targeting this pathway might represent an alternative strategy to enhance T cell-based therapies.


Assuntos
Melanoma , Linfócitos T Citotóxicos , Camundongos , Animais , Linfócitos T Citotóxicos/metabolismo , Linfócitos T CD8-Positivos , Melanoma/terapia , Melanoma/tratamento farmacológico , Células Clonais/metabolismo
16.
JCI Insight ; 8(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36472908

RESUMO

Severe lung damage resulting from COVID-19 involves complex interactions between diverse populations of immune and stromal cells. In this study, we used a spatial transcriptomics approach to delineate the cells, pathways, and genes present across the spectrum of histopathological damage in COVID-19-affected lung tissue. We applied correlation network-based approaches to deconvolve gene expression data from 46 areas of interest covering more than 62,000 cells within well-preserved lung samples from 3 patients. Despite substantial interpatient heterogeneity, we discovered evidence for a common immune-cell signaling circuit in areas of severe tissue that involves crosstalk between cytotoxic lymphocytes and pro-inflammatory macrophages. Expression of IFNG by cytotoxic lymphocytes was associated with induction of chemokines, including CXCL9, CXCL10, and CXCL11, which are known to promote the recruitment of CXCR3+ immune cells. The TNF superfamily members BAFF (TNFSF13B) and TRAIL (TNFSF10) were consistently upregulated in the areas with severe tissue damage. We used published spatial and single-cell SARS-CoV-2 data sets to validate our findings in the lung tissue from additional cohorts of patients with COVID-19. The resulting model of severe COVID-19 immune-mediated tissue pathology may inform future therapeutic strategies.


Assuntos
COVID-19 , Pneumonia , Humanos , Transcriptoma , SARS-CoV-2 , Pulmão
17.
Nat Cardiovasc Res ; 2(7): 656-672, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38362263

RESUMO

The immune system is integral to cardiovascular health and disease. Targeting inflammation ameliorates adverse cardiovascular outcomes. Atherosclerosis, a major underlying cause of cardiovascular disease (CVD), is conceptualised as a lipid-driven inflammation where macrophages play a non-redundant role. However, evidence emerging so far from single cell atlases suggests a dichotomy between lipid associated and inflammatory macrophage states. Here, we present an inclusive reference atlas of human intraplaque immune cell communities. Combining scRNASeq of human surgical carotid endarterectomies in a discovery cohort with bulk RNASeq and immunohistochemistry in a validation cohort (the Carotid Plaque Imaging Project-CPIP), we reveal the existence of PLIN2hi/TREM1hi macrophages as a toll-like receptor-dependent inflammatory lipid-associated macrophage state linked to cerebrovascular events. Our study shifts the current paradigm of lipid-driven inflammation by providing biological evidence for a pathogenic macrophage transition to an inflammatory lipid-associated phenotype and for its targeting as a new treatment strategy for CVD.

19.
PLoS Genet ; 5(6): e1000511, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19521500

RESUMO

Neural stem cell self-renewal, neurogenesis, and cell fate determination are processes that control the generation of specific classes of neurons at the correct place and time. The transcription factor Pax6 is essential for neural stem cell proliferation, multipotency, and neurogenesis in many regions of the central nervous system, including the cerebral cortex. We used Pax6 as an entry point to define the cellular networks controlling neural stem cell self-renewal and neurogenesis in stem cells of the developing mouse cerebral cortex. We identified the genomic binding locations of Pax6 in neocortical stem cells during normal development and ascertained the functional significance of genes that we found to be regulated by Pax6, finding that Pax6 positively and directly regulates cohorts of genes that promote neural stem cell self-renewal, basal progenitor cell genesis, and neurogenesis. Notably, we defined a core network regulating neocortical stem cell decision-making in which Pax6 interacts with three other regulators of neurogenesis, Neurog2, Ascl1, and Hes1. Analyses of the biological function of Pax6 in neural stem cells through phenotypic analyses of Pax6 gain- and loss-of-function mutant cortices demonstrated that the Pax6-regulated networks operating in neural stem cells are highly dosage sensitive. Increasing Pax6 levels drives the system towards neurogenesis and basal progenitor cell genesis by increasing expression of a cohort of basal progenitor cell determinants, including the key transcription factor Eomes/Tbr2, and thus towards neurogenesis at the expense of self-renewal. Removing Pax6 reduces cortical stem cell self-renewal by decreasing expression of key cell cycle regulators, resulting in excess early neurogenesis. We find that the relative levels of Pax6, Hes1, and Neurog2 are key determinants of a dynamic network that controls whether neural stem cells self-renew, generate cortical neurons, or generate basal progenitor cells, a mechanism that has marked parallels with the transcriptional control of embryonic stem cell self-renewal.


Assuntos
Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Neocórtex/metabolismo , Neurogênese , Neurônios/citologia , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Animais , Células Cultivadas , Proteínas do Olho/genética , Feminino , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/citologia , Neocórtex/embriologia , Neurônios/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética , Células-Tronco/metabolismo
20.
Sci Transl Med ; 14(676): eabm4054, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542696

RESUMO

More than 40% of individuals will develop osteoarthritis (OA) during their lifetime, yet there are currently no licensed disease-modifying treatments for this disabling condition. Common polymorphic variants in ALDH1A2, which encodes the key enzyme for synthesis of all-trans retinoic acid (atRA), are associated with severe hand OA. Here, we sought to elucidate the biological significance of this association. We first confirmed that ALDH1A2 risk variants were associated with hand OA in the U.K. Biobank. Articular cartilage was acquired from 33 individuals with hand OA at the time of routine hand OA surgery. After stratification by genotype, RNA sequencing was performed. A reciprocal relationship between ALDH1A2 mRNA and inflammatory genes was observed. Articular cartilage injury up-regulated similar inflammatory genes by a process that we have previously termed mechanoflammation, which we believe is a primary driver of OA. Cartilage injury was also associated with a concomitant drop in atRA-inducible genes, which were used as a surrogate measure of cellular atRA concentration. Both responses to injury were reversed using talarozole, a retinoic acid metabolism blocking agent (RAMBA). Suppression of mechanoflammation by talarozole was mediated by a peroxisome proliferator-activated receptor gamma (PPARγ)-dependent mechanism. Talarozole was able to suppress mechano-inflammatory genes in articular cartilage in vivo 6 hours after mouse knee joint destabilization and reduced cartilage degradation and osteophyte formation after 26 days. These data show that boosting atRA suppresses mechanoflammation in the articular cartilage in vitro and in vivo and identifies RAMBAs as potential disease-modifying drugs for OA.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Animais , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Tretinoína/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo , Cartilagem Articular/metabolismo , Articulação do Joelho , Anti-Inflamatórios , Condrócitos/metabolismo , Família Aldeído Desidrogenase 1/metabolismo , Retinal Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA