Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 31(3): 035602, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31569083

RESUMO

Three luminescent silica-based nanohybrids were fabricated by grafting of silylated Ru(II) and Nd/Yb(III) complexes onto mesoporous silica nanoparticles obtained by microemulsion method. The prepared nanohybrids were characterized by Fourier transform-Raman spectroscopy, solid state-nuclear magnetic resonance, high resolution-transmission electron microscopy and scanning and transmission electron microscopy techniques. The chemical integrity and the grafting of all complexes inside MSNs nanopores as well as a good distribution of metal complexes onto MSNs surface were achieved for all nanohybrids. Photophysical results revealed that by monitoring the excitation on Ru(II) moieties from SiO 2 -RuNd and SiO 2 -RuYb nanohybrids, the sensitization of NIR-emitting Nd/Yb(III) ions were successfully detected via energy transfer processes. Energy transfer rates (k EnT) of 0.20 × 107 and 0.11 × 107 s-1 and efficiencies of energy transfer (η EnT) of 40% and 27.5% were obtained for SiO 2 -RuNd and SiO 2 -RuYb nanohybrids, respectively. These results confirm the preparation of promising dual (near-infrared/visible)-emitting silica-based nanohybrids as new nanotools for applications as nanosensores and nanomarkers.

2.
Nanotechnology ; 31(8): 085709, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703226

RESUMO

Lanthanide (Ln) complexes emitting in the near-infrared (NIR) region have fostered great interest as upcoming optical tags owing to their high spatial and temporal resolution emission as well deeper light penetration in biological tissues for non-invasive monitoring. For use in live-cell imaging, lanthanide complexes with long-wavelength absorption and good brightness are especially critical. Light-harvesting ligands of Ln complexes are typically excited in the ultraviolet region, which in turn trigger simultaneously autofluorescence and long-exposition damage of living systems. The association of d-metalloligands rather than organic chromophores enables the excitation of NIR-emitting Ln complex occurs in the visible region. Taking advantage of the long-lived excited states and intense absorption band in the ultraviolet (UV) to NIR region of Ru(II), we successfully design a dual-emitting (in the visible and NIR region) d-f heterobinuclear complex based on Ru(II) metalloligand and Yb(III) complex. In addition, we developed luminescent nanohybrids by grafting of Ru(II)-Yb(III) heterobinuclear complexes containing silylated ligands on the surface of mesoporous and dense silica matrix. The nanomarkers were successfully applied for imaging of murine melanoma B16-F10 and neonatal human dermal fibroblast HDFn cell cultures by one-photon or two-photon absorption using laser scanning confocal microscopy. Great cellular uptake, low cytotoxicity and the possibility to achieve visible and NIR emission via two-photons excitation show that the nanohybrids are remarkable markers for in vitro and a potential tool for in vivo applications.

3.
Phys Chem Chem Phys ; 19(32): 21612-21624, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28766615

RESUMO

We report a detailed structural investigation of a series of fluoride-phosphate glasses with different phosphate/fluoride ratios in the system xSr(PO3)2-(100 - x)[AlF3-CaF2-SrF2-MgF2] with x = 5, 10, 20, 40. Raman and multinuclear solid NMR spectroscopies confirm that the polyphosphate network structure is successively transformed to a structure dominated by Al-O-P linkages with increasing AlF3 content. Average numbers of Al-O-P linkages have been quantified by 27Al/31P NMR double-resonance techniques. The majority of the fluoride species are found in an alkaline earth metal/aluminum rich environment. The local environments for rare-earth ions have been characterized by EPR spectroscopy of Yb3+ ion spin probes and by photoluminescence experiments on Eu3+ dopant ions, including the 5D0 → 7F2 and 5D0 → 7F1 transition intensity ratio, the normalized phonon sideband intensities in the excitation spectra, and the lifetime of the 5D0 excited state. The results indicate clear correlations between these parameters as a function of composition, and confirm that even at the highest fluoride levels, there is still some residual rare-earth phosphate coordination.

4.
J Nanosci Nanotechnol ; 15(1): 865-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26328451

RESUMO

Zidovudine (AZT) is the antiretroviral drug most frequently used for the treatment of Acquired Immunodeficiency Syndrome. Its low oral bioavailability demands the development of innovative strategies to overcome the first pass metabolism. The nasal route is an option for enhanced therapeutic efficacy and to reduce the extent of the first-pass effect. In this article, AZT loaded chitosan nanoparticles were prepared by a modified ionotropic gelation method with sodium tripolyphosphate. The increase proportion of CS (NP1 10:01 (w/w)) promoted the formation of smaller nanoparticles (260 nm), while raising the proportion of TPP (NP2 5:1 w/w) increased the nanoparticles size (330 nm). The incorporation of AZT increased the nanoparticles size for both AZT-loaded nanoparticles AZT-loaded NP1 (406 nm) and AZT-loaded NP2 (425 nm). The incorporation of AZT into NP1 did not change the electrophoretic mobility, however, in AZT-loaded NP2 there was a significant increase. The positive surface of the nanoparticles is very important for the mucoadhesive properties due interaction with the sialic groups of the mucin. Nuclear resonance magnetic data showed that the higher concentration of chitosan in the nanoparticles favored the interaction of few phosphate units (pyrophosphate) by ionic interaction Scanning electron microscopy, revealed that the nanoparticles are nearly spherical shape with porous surface. The entrapment efficiency of AZT, was 17.58% ± 1.48 and 11.02% ± 2.05 for NP1 and NP2, respectively. The measurement of the mucoadhesion force using mucin discs and nasal tissue obtained values of NP1 = 2.12 and NP2 = 4.62. In vitro permeation study showed that the nanoparticles promoted an increase in the flux of the drug through the nasal mucosa. In view of these results, chitosan nanoparticles were found to be a promising approach for the incorporation of hydrophilic drugs and these results suggest that the CS-containing nanoparticles have great potential for nasal AZT administration.


Assuntos
Fármacos Anti-HIV/química , Quitosana/química , Portadores de Fármacos/química , Nanopartículas/química , Zidovudina/química , Administração Intranasal , Animais , Fármacos Anti-HIV/farmacocinética , Portadores de Fármacos/farmacocinética , Mucinas/metabolismo , Mucosa Nasal/metabolismo , Ressonância Magnética Nuclear Biomolecular , Permeabilidade , Suínos , Zidovudina/farmacocinética
5.
ACS Omega ; 9(30): 32651-32661, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100338

RESUMO

Drought stress impacts soybean yields and physiological processes. However, the insertion of the activated form of the AtAREB1 gene in the soybean cultivar BR16, which is sensitive to water deficit, improved the drought response of the genetically modified plants. Thus, in this study, we used 1H NMR in solution and solid-state NMR to investigate the response of genetically modified soybean overexpressing AtAREB1 under water deficiency conditions. We achieved that drought-tolerant soybean yields high content of amino acids isoleucine, leucine, threonine, valine, proline, glutamate, aspartate, asparagine, tyrosine, and phenylalanine after 12 days of drought stress conditions, as compared to drought-sensitive soybean under the same conditions. Specific target compounds, including sugars, organic acids, and phenolic compounds, were identified as involved in controlling sensitive soybean during the vegetative stage. Solid-state NMR was used to study the impact of drought stress on starch and cellulose contents in different soybean genotypes. The findings provide insights into the metabolic adjustments of soybean overexpressing AREB transcription factors in adapting to dry climates. This study presents NMR techniques for investigating the metabolome of transgenic soybean plants in response to the water deficit. The approach allowed for the identification of physiological and morphological changes in drought-resistant and drought-tolerant soybean tissues. The findings indicate that drought stress significantly alters micro- and macromolecular metabolism in soybean plants. Differential responses were observed among roots and leaves as well as drought-tolerant and drought-sensitive cultivars, highlighting the complex interplay between overexpressed transcription factors and drought stress in soybean plants.

6.
Carbohydr Polym ; 157: 1695-1702, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27987885

RESUMO

Chitosan nanoparticles have been extensively studied for both drug and protein/peptide delivery. The aim of this study was to develop an optimized chitosan nanoparticle, by ionotropic gelation method, using 32 full factorial design with a novel polyanion, sodium polyphosphate, well known under the trade name Graham salt. The effects of these parameters on the particle size, zeta potential, and morphology and association efficiency were investigated. The optimized nanoparticles showed an estimated size of 166.20±1.95nm, a zeta potential of 38.7±1.2mV and an efficacy of association of 97.0±2.4%. The Atomic Force Microscopy (AFM) and Scanning Electronic Microscopy (SEM) revealed spherical nanoparticles with uniform size. Molecular interactions among the components of the nanoparticles and peptide were evaluated by Fourier Transform Infrared Spectra (FTIR) and Differential Scanning Calorimetry (DSC). The obtained results indicated that, the developed nanoparticles demonstrated high biocompatible, revealing no or low toxicity in the human cancer cell line (Caco-2). In conclusion, this work provides parameters that contribute to production of chitosan nanoparticles and sodium polyphosphate with desirable size, biocompatible and enabling successful use for protein/peptides delivery.


Assuntos
Quitosana , Sistemas de Liberação de Medicamentos , Nanopartículas , Polifosfatos , Células CACO-2 , Humanos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Int J Biol Macromol ; 103: 467-476, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28527999

RESUMO

Despite advances in the field of biomaterials for bone repair/regeneration, some challenges for developing an ideal bone substitute need to be overcome. Herein, this study synthesized and evaluated in vitro a nanocomposite based on bacterial cellulose (BC), collagen (COL), apatite (Ap) and osteogenic growth peptide (OGP) or its C-terminal pentapeptide [OGP(10-14)] for bone regeneration purposes. The BC-COL nanocomposites were successfully obtained by carbodiimide-mediated coupling as demonstrated by spectroscopy analysis. SEM, FTIR and 31P NMR analyses revealed that in situ synthesis to apatite was an effective route for obtaining of bone-like apatite. The OGP-containing (BC-COL)-Ap stimulated the early development of the osteoblastic phenotype. Additionally, the association among collagen, apatite, and OGP peptides enhanced cell growth compared with OGP-containing BC-Ap. Furthermore, none of the nanocomposites showed cytotoxic, genotoxic or mutagenic effects. These promising results suggest that the (BC-COL)-Ap associated with OGP peptides might be considered a potential candidate for bone tissue engineering applications.


Assuntos
Apatitas/química , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Celulose/química , Colágeno/química , Histonas/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Nanoestruturas/química , Materiais Biocompatíveis/química , Linhagem Celular , Nanocompostos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA