Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
EMBO Rep ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907027

RESUMO

Extracellular matrix (ECM) is a major component of the tumor environment, promoting the establishment of a pro-invasive behavior. Such environment is supported by both tumor- and stromal-derived metabolites, particularly lactate. In prostate cancer (PCa), cancer-associated fibroblasts (CAFs) are major contributors of secreted lactate, able to impact on metabolic and transcriptional regulation in cancer cells. Here, we describe a mechanism by which CAF-secreted lactate promotes in PCa cells the expression of genes coding for the collagen family. Lactate-exploiting PCa cells rely on increased α-ketoglutarate (α-KG) which activates the α-KG-dependent collagen prolyl-4-hydroxylase (P4HA1) to support collagen hydroxylation. De novo synthetized collagen plays a signaling role by activating discoidin domain receptor 1 (DDR1), supporting stem-like and invasive features of PCa cells. Inhibition of lactate-induced collagen hydroxylation and DDR1 activation reduces the metastatic colonization of PCa cells. Overall, these results provide a new understanding of the link between collagen remodeling/signaling and the nutrient environment exploited by PCa.

2.
Mar Drugs ; 20(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35049920

RESUMO

The chemical investigation of the Mediterranean ascidian Clavelina lepadiformis has led to the isolation of a new lepadin, named lepadin L, and two known metabolites belonging to the same family, lepadins A and B. The planar structure and relative configuration of the decahydroquinoline ring of lepadin L were established both by means of HR-ESIMS and by a detailed as extensive analysis of 1D and 2D NMR spectra. Moreover, microscale derivatization of the new alkaloid lepadin L was performed to assess the relative configuration of the functionalized alkyl side chain. Lepadins A, B, and L were tested for their cytotoxic activity on a panel of cancer cell lines (human melanoma [A375], human breast [MDA-MB-468], human colon adenocarcinoma [HT29], human colorectal carcinoma [HCT116], and mouse myoblast [C2C12]). Interestingly, a deeper investigation into the mechanism of action of the most cytotoxic metabolite, lepadin A, on the A375 cells has highlighted its ability to induce a strongly inhibition of cell migration, G2/M phase cell cycle arrest and a dose-dependent decrease of cell clonogenity, suggesting that it is able to impair self-renewing capacity of A375 cells.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Urocordados , Alcaloides/química , Animais , Antineoplásicos/química , Organismos Aquáticos , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Mar Mediterrâneo , Camundongos , Relação Estrutura-Atividade
3.
EMBO J ; 36(16): 2373-2389, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28694244

RESUMO

Tumor progression alters the composition and physical properties of the extracellular matrix. Particularly, increased matrix stiffness has profound effects on tumor growth and metastasis. While endothelial cells are key players in cancer progression, the influence of tumor stiffness on the endothelium and the impact on metastasis is unknown. Through quantitative mass spectrometry, we find that the matricellular protein CCN1/CYR61 is highly regulated by stiffness in endothelial cells. We show that stiffness-induced CCN1 activates ß-catenin nuclear translocation and signaling and that this contributes to upregulate N-cadherin levels on the surface of the endothelium, in vitro This facilitates N-cadherin-dependent cancer cell-endothelium interaction. Using intravital imaging, we show that knockout of Ccn1 in endothelial cells inhibits melanoma cancer cell binding to the blood vessels, a critical step in cancer cell transit through the vasculature to metastasize. Targeting stiffness-induced changes in the vasculature, such as CCN1, is therefore a potential yet unappreciated mechanism to impair metastasis.


Assuntos
Comunicação Celular , Células Endoteliais/fisiologia , Melanócitos/fisiologia , Caderinas/análise , Linhagem Celular , Proteína Rica em Cisteína 61/análise , Regulação da Expressão Gênica , Humanos , Espectrometria de Massas , beta Catenina/análise
4.
Proteomics ; 18(5-6): e1700167, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29280568

RESUMO

Fibroblasts have exceptional phenotypic plasticity and capability to secrete vast amount of soluble factors, extracellular matrix components and extracellular vesicles. While in physiological conditions this makes fibroblasts master regulators of tissue homeostasis and healing of injured tissues, in solid tumors cancer associated fibroblasts (CAFs) co-evolve with the disease, and alter the biochemical and physical structure of the tumor microenvironment, as well as the behavior of the surrounding stromal and cancer cells. Thus CAFs are fundamental regulators of tumor progression and influence response to therapeutic treatments. Increasing efforts are devoted to better understand the biology of CAFs to bring insights to develop complementary strategies to target this cell type in cancer. Here we highlight components of the tumor microenvironment that play key roles in cancer progression and invasion, and provide an extensive overview of past and emerging understanding of CAF biology as well as the contribution that MS-based proteomics has made to this field.


Assuntos
Fibroblastos Associados a Câncer/patologia , Neoplasias/patologia , Células Estromais/patologia , Microambiente Tumoral , Animais , Humanos
5.
Biochim Biophys Acta ; 1864(10): 1339-55, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27421795

RESUMO

Originally identified as a low molecular weight acid phosphatase, LMW-PTP is actually a protein tyrosine phosphatase that acts on many phosphotyrosine-containing cellular proteins that are primarily involved in signal transduction. Differences in sequence, structure, and substrate recognition as well as in subcellular localization in different organisms enable LMW-PTP to exert many different functions. In fact, during evolution, the LMW-PTP structure adapted to perform different catalytic actions depending on the organism type. In bacteria, this enzyme is involved in the biosynthesis of group 1 and 4 capsules, but it is also a virulence factor in pathogenic strains. In yeast, LMW-PTPs dephosphorylate immunophilin Fpr3, a peptidyl-prolyl-cis-trans isomerase member of the protein chaperone family. In humans, LMW-PTP is encoded by the ACP1 gene, which is composed of three different alleles, each encoding two active enzymes produced by alternative RNA splicing. In animals, LMW-PTP dephosphorylates a number of growth factor receptors and modulates their signalling processes. The involvement of LMW-PTP in cancer progression and in insulin receptor regulation as well as its actions as a virulence factor in a number of pathogenic bacterial strains may promote the search for potent, selective and bioavailable LMW-PTP inhibitors.


Assuntos
Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Sequência de Aminoácidos , Animais , Evolução Biológica , Humanos , Peso Molecular , Fosfotirosina/genética , Fosfotirosina/metabolismo , Alinhamento de Sequência , Transdução de Sinais/genética
6.
Biochim Biophys Acta ; 1853(12): 3211-23, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26384873

RESUMO

Fibroblasts are the most abundant cells in connective tissue and, with fibrillar extracellular matrix, form the structural scaffolding of organs. In solid tumors, interaction with cancer cells induces fibroblasts transdifferentiation into an activated form, which become a fundamental part of the tumor stroma. Within tumor microenvironment stromal and cancer cells engage a crosstalk that is mediated by soluble factors, cellcell contacts and extracellular vesicles trafficlking. Here we report that fibroblasts have the ability to transfer a remarkable amount of proteins and lipids to neighboring cells, in an ectosome-dependent fashion, identifying a novel and native property of these cells. Cancer-associated fibroblasts show an enhanced production and delivering of ectc:Jsomes to cancer cells compared to normal fibroblasts. As a consequence of this phenomenon, tumor cells increase their proliferation rate, indicating that ectosome-mediated trafficking could be a relevant mechanism mediating the trophic function of activated connective tissue on tumor cells.


Assuntos
Proliferação de Células , Metabolismo dos Lipídeos , Neoplasias da Próstata/patologia , Transporte Proteico , Linhagem Celular Tumoral , Técnicas de Cocultura , Fibroblastos/patologia , Humanos , Masculino , Microambiente Tumoral
7.
Biochim Biophys Acta ; 1830(4): 3102-11, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23352912

RESUMO

BACKGROUND: Type-2 diabetes is a worldwidely diffuse disease characterized by insulin resistance that arises from alterations of receptor and/or post-receptor events of insulin signalling. Studies performed with PTP1B-deficent mice demonstrated that PTP1B is the main negative regulator of insulin signalling. Inhibition or down regulation of this enzyme causes enhanced insulin sensitivity. Hence this enzyme represents the most attractive target for development of innovative anti-diabetic drugs. METHODS: Selection of new PTP1B inhibitors among an in house library of polyphenolic compounds was carried out screening their activity. The inhibition mechanism of Morin was determined by kinetic analyses. The cellular action of Morin was assayed on HepG2 cells. Analyses of the insulin signalling pathways was carried out by Western blot methods, glycogen synthesis was estimated by measuring the incorporation of [(3)H]-glucose, gluconeogenesis rate was assayed by measuring the glucose release in the cell medium. Cell growth was estimated by cell count. Docking analysis was conducted with SwissDock program. RESULTS: We demonstrated that Morin: i) is a non-competitive inhibitor of PTP1B displaying a Ki in the µM range; ii) increases the phosphorylation of the insulin receptor and Akt; iii) inhibits gluconeogenesis and enhances glycogen synthesis. Morin does not enhance cell growth. CONCLUSIONS: We have identified Morin as a new small molecular non-competitive inhibitor of PTP1B, which behaves as an activator and sensitizer of the insulin receptor stimulating the metabolic pathways only. GENERAL SIGNIFICANCE: Our study suggests that Morin is a useful lead for development of new low Mr compounds potentially active as antidiabetic drugs.


Assuntos
Flavonoides/farmacologia , Hipoglicemiantes/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Animais , Apigenina/farmacologia , Proliferação de Células/efeitos dos fármacos , Glucose/biossíntese , Glicogênio/biossíntese , Células Hep G2 , Humanos , Insulina/metabolismo , Insulina/farmacologia , Camundongos , Células NIH 3T3
8.
Heliyon ; 10(2): e24719, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312589

RESUMO

We investigated the effect of growing on lactate instead of glucose in human cardiomyocyte assessing their viability, cell cycle activity, oxidative stress and metabolism by a proteomic and metabolomic approach. In previous studies performed on elite players, we found that adaptation to exercise is characterized by a chronic high plasma level of lactate. Lactate is considered not only an energy source but also a signalling molecule and is referred as "lactormone"; heart is one of the major recipients of exogenous lactate. With this in mind, we used a cardiac cell line AC16 to characterize the lactate metabolic profile and investigate the metabolic flexibility of the heart. Interestingly, our data indicated that cardiomyocytes grown on lactate (72 h) show change in several proteins and metabolites linked to cell hypertrophy and cytoskeleton remodelling. The obtained results could help to understand the effect of this metabolite on heart of high-performance athletes.

9.
Sci Signal ; 17(827): eade0580, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470957

RESUMO

Intercellular communication between different cell types in solid tumors contributes to tumor growth and metastatic dissemination. The secretome of cancer-associated fibroblasts (CAFs) plays major roles in these processes. Using human mammary CAFs, we showed that CAFs with a myofibroblast phenotype released extracellular vesicles that transferred proteins to endothelial cells (ECs) that affected their interaction with immune cells. Mass spectrometry-based proteomics identified proteins transferred from CAFs to ECs, which included plasma membrane receptors. Using THY1 as an example of a transferred plasma membrane-bound protein, we showed that CAF-derived proteins increased the adhesion of a monocyte cell line to ECs. CAFs produced high amounts of matrix-bound EVs, which were the primary vehicles of protein transfer. Hence, our work paves the way for future studies that investigate how CAF-derived matrix-bound EVs influence tumor pathology by regulating the function of neighboring cancer, stromal, and immune cells.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Fibroblastos Associados a Câncer/metabolismo , Células Endoteliais , Neoplasias/metabolismo , Membrana Celular , Linhagem Celular , Fibroblastos/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral
10.
Cell Commun Signal ; 11: 81, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24168032

RESUMO

Solid tumors are composed of both cancer cells and various types of accessory cells, mainly fibroblasts, that collectively compose the so called tumor-microenvironment. Cancer-associated fibroblasts have been described to actively participate in cancer progression by establishing a cytokine-mediated as well as metabolic crosstalk with cancer cells. In the present paper we show that activated human fibroblasts are able to boost tumor cells proliferation and that this effect is greatly dependent on stromal carbonic anhydrase IX (CA IX) activity. In fact fibroblasts show a strong upregulation of CA IX expression upon activation by cancer cells, while CA IX products, protons and bicarbonate, exert differential effects on cancer cells proliferation. While acidification of extracellular pH, a typical condition of rapidly growing solid tumors, is detrimental for tumor cells proliferation, bicarbonate, through its organication, supplies cancer cells with intermediates useful to sustain their high proliferation rate. Here we propose a new kind of fibroblasts/tumor cells crosstalk within tumor microenvironment, mediated by stromal CA IX products, aimed to favor cancer cells growth, opening new perspectives on CA IX role in tumor microenvironment.


Assuntos
Anidrases Carbônicas/metabolismo , Fibroblastos/metabolismo , Neoplasias/patologia , Microambiente Tumoral/fisiologia , Animais , Catálise , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Xenoenxertos , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos SCID , Neoplasias/metabolismo , Bicarbonato de Sódio/metabolismo
11.
Pharmaceutics ; 15(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36839851

RESUMO

Type 2 diabetes mellitus (T2DM) is a complex disease characterized by impaired glucose homeostasis and serious long-term complications. First-line therapeutic options for T2DM treatment are monodrug therapies, often replaced by multidrug therapies to ensure that non-responding patients maintain target glycemia levels. The use of multitarget drugs instead of mono- or multidrug therapies has been emerging as a main strategy to treat multifactorial diseases, including T2DM. Therefore, modern drug discovery in its early stages aims to identify potential modulators for multiple targets; for this purpose, exploration of the chemical space of natural products represents a powerful tool. Our study demonstrates that avarone, a sesquiterpene quinone obtained from the sponge Dysidea avara, is capable of inhibiting in vitro PTP1B, the main negative regulator of the insulin receptor, while it improves insulin sensitivity, and mitochondria activity in C2C12 cells. We observe that when avarone is administered alone, it acts as an insulin-mimetic agent. In addition, we show that avarone acts as a tight binding inhibitor of aldose reductase (AKR1B1), the enzyme involved in the development of diabetic complications. Overall, avarone could be proposed as a novel natural hit to be developed as a multitarget drug for diabetes and its pathological complications.

12.
Endocr Relat Cancer ; 30(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493200

RESUMO

Pheochromocytomas/paragangliomas (PPGLs) are neuroendocrine tumours, mostly resulting from mutations in predisposing genes. Mutations of succinate dehydrogenase (SDH) subunit B (SDHB) are associated with high probability of metastatic disease. Since bioelectrical properties and signalling in cancer are an emerging field, we investigated the metabolic, functional and electrophysiological characteristics in human succinate dehydrogenase subunit B (SDHB)-deficient pheochromocytoma cells. These cells exhibited reduced SDH function with elevated succinate-to-fumarate ratio and reduced intracellular ATP levels. The analysis of membrane passive properties revealed a more hyperpolarized membrane potential and a lower cell capacitance of SDHB-deficient cells compared to the parental ones. These bioelectrical changes were associated with reduced proliferation and adhesion capacity of SDHB-deficient cells. Only in SDHB-deficient cells, we also observed an increased amplitude of potassium currents suggesting an activation of ATP-sensitive potassium channels (KATP). Indeed, exposure of the SDHB-deficient cells to glibenclamide, a specific KATP inhibitor, or to ATP caused normalization of potassium current features and altered proliferation and adhesion. In this work, we show for the first time that reduced intracellular ATP levels in SDHB-deficient chromaffin cells impaired cell bioelectrical properties, which, in turn, are associated with an increased cell aggressiveness. Moreover, we first ever demonstrated that glibenclamide not only reduced the outward potassium currents in SDHB-deficient cells but increased their growth capacity, reduced their ability to migrate and shifted their phenotype towards one more similar to that of parental one.


Assuntos
Neoplasias das Glândulas Suprarrenais , Células Cromafins , Paraganglioma , Feocromocitoma , Humanos , Succinato Desidrogenase/genética , Glibureto/farmacologia , Paraganglioma/genética , Feocromocitoma/genética , Neoplasias das Glândulas Suprarrenais/genética , Células Cromafins/metabolismo , Células Cromafins/patologia , Trifosfato de Adenosina
13.
Eur J Med Chem ; 252: 115270, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934484

RESUMO

Type 2 diabetes mellitus (T2DM) is a serious chronic disease with an alarmingly growing worldwide prevalence. Current treatment of T2DM mainly relies on drug combinations in order to control blood glucose levels and consequently prevent the onset of hyperglycaemia-related complications. The development of multiple-targeted drugs recently emerged as an attractive alternative to drug combinations for the treatment of complex diseases with multifactorial pathogenesis, such as T2DM. Protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AKR1B1) are two enzymes crucially involved in the development of T2DM and its chronic complications and, therefore, dual inhibitors targeted to both these enzymes could provide novel agents for the treatment of this complex pathological condition. In continuing our search for dual-targeted PTP1B/AKR1B1 inhibitors, we designed new (5-arylidene-4-oxo-2-thioxothiazolidin-3-yl)alkanoic acids. Among them, 3-(4-phenylbutoxy)benzylidene derivatives 6f and 7f, endowed with interesting inhibitory activity against both targets, proved to control specific cellular pathways implicated in the development of T2DM and related complications.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Monoéster Fosfórico Hidrolases , Ligantes , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Aldeído Redutase
14.
Front Oncol ; 13: 1245248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901327

RESUMO

In the early stages of carcinogenesis, the transformed cells become "invisible" to the immune system. From this moment on, the evolution of the tumor depends essentially on the genotype of the primitive cancer cells and their subsequent genetic drift. The role of the immune system in blocking tumor progression from the earliest stages is largely underestimated because by the time tumors are clinically detectable, the immune system has already completely failed its task. Therefore, a clinical treatment capable of restoring the natural anti-tumor role of the immune system could prove to be the "ultimate weapon" against cancer. Herein, we propose a novel therapeutic approach for the treatment of solid cancer that exploits the capability of activated monocytes to transfer major histocompatibility complex I (MHC-I) molecules bound to antigenic peptides to cancer cells using microvesicles as cargo, making tumor cells target of a "natural" CD8+ T lymphocyte cytotoxic response.

15.
J Med Chem ; 66(5): 3566-3587, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36790935

RESUMO

A new series of analogues or derivatives of the previously reported PPARα/γ dual agonist LT175 allowed the identification of ligand 10, which was able to potently activate both PPARα and -γ subtypes as full and partial agonists, respectively. Docking studies were performed to provide a molecular explanation for this different behavior on the two different targets. In vivo experiments showed that this compound induced a significant reduction in blood glucose and lipid levels in an STZ-induced diabetic mouse model displaying no toxic effects on bone, kidney, and liver. By examining in depth the antihyperglycemic activity of 10, we found out that it produced a slight but significant inhibition of the mitochondrial pyruvate carrier, acting also through insulin-independent mechanisms. This is the first example of a PPARα/γ dual agonist reported to show this inhibitory effect representing, therefore, the potential lead of a new class of drugs for treatment of dyslipidemic type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , PPAR alfa , Camundongos , Animais , PPAR alfa/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Transportadores de Ácidos Monocarboxílicos , Agonistas PPAR-gama , PPAR gama/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
16.
Sci Signal ; 15(753): eaaz4742, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36166511

RESUMO

Blood vessels deliver oxygen and nutrients that sustain tumor growth and enable the dissemination of cancer cells to distant sites and the recruitment of intratumoral immune cells. In addition, the structural and functional abnormalities of the tumor vasculature foster the development of an aggressive tumor microenvironment and impair the efficacy of existing cancer therapies. Extracellular vesicles (EVs) have emerged as major players of tumor progression, and a growing body of evidence has demonstrated that EVs derived from cancer cells trigger multiple responses in endothelial cells that alter blood vessel function in tumors. EV-mediated signaling in endothelial cells can occur through the transfer of functional cargos such as miRNAs, lncRNAs, cirRNAs, and proteins. Moreover, membrane-bound proteins in EVs can elicit receptor-mediated signaling in endothelial cells. Together, these mechanisms reprogram endothelial cells and contribute to the sustained exacerbated angiogenic signaling typical of tumors, which, in turn, influences cancer progression. Targeting these angiogenesis-promoting EV-dependent mechanisms may offer additional strategies to normalize tumor vasculature. Here, we discuss the current knowledge pertaining to the contribution of cancer cell-derived EVs in mechanisms regulating blood vessel functions in tumors. Moreover, we discuss the translational opportunities in targeting the dysfunctional tumor vasculature using EVs and highlight the open questions in the field of EV biology that can be addressed using mass spectrometry-based proteomics analysis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias , RNA Longo não Codificante , Células Endoteliais/patologia , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/metabolismo , Neoplasias/metabolismo , Oxigênio/metabolismo , RNA Longo não Codificante/metabolismo , Microambiente Tumoral
17.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35337123

RESUMO

Diabetes mellitus (DM) represents a complex and multifactorial disease that causes metabolic disorders with acute and long-term serious complications. The onset of DM, with over 90% of cases of diabetes classified as type 2, implies several metabolic dysfunctions leading to consider DM a worldwide health problem. In this frame, protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AR) are two emerging targets involved in the development of type 2 diabetes mellitus (T2DM) and its chronic complications. Herein, we employed a marine-derived dual type inhibitor of these enzymes, phosphoeleganin, as chemical starting point to perform a fragment-based process in search for new inhibitors. Phosphoeleganin was both disassembled by its oxidative cleavage and used as model structure for the synthesis of a small library of functionalized derivatives as rationally designed analogues. Pharmacological screening supported by in silico docking analysis outlined the mechanism of action against PTP1B exerted by a phosphorylated fragment and a synthetic simplified analogue, which represent the most potent inhibitors in the library.

18.
Cells ; 11(24)2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36552757

RESUMO

Oil production waste products (OPWPs) derive from olive mill and represent a crucial environmental problem due to their high polyphenolic content able to pollute the ground. One option to reduce the OPWPs' environmental impact is to exploit polyphenols' biological properties. We sought to analyze the transcriptomic variations of colorectal cancer cells exposed to the OPWPs extracts and hydroxytyrosol, the major component, to recognize unknown and ill-defined characteristics. Among the top affected pathways identified by GSEA, we focused on oxidative phosphorylation in an in vitro system. Colorectal cancer HCT116 and LoVo cells treated with hydroxytyrosol or OPWPs extracts showed enhancement of the respiratory chain complexes' protein levels, ATP production and membrane potential, suggesting stimulation of mitochondrial functions. The major proteins involved in mitochondrial biogenesis and fusion events of mitochondrial dynamics were positively affected, as by Western blot, fostering increase of the mitochondrial mass organized in a network of elongated organelles. Mechanistically, we proved that PPARγ mediates the effects as they are mimicked by a specific ligand and impaired by a specific inhibitor. OPWP extracts and hydroxytyrosol, thus, promote mitochondrial functionality via a feed-forward regulatory loop involving the PPARγ/PGC-1α axis. These results support their use in functional foods and as adjuvants in cancer therapy.


Assuntos
Neoplasias Colorretais , Resíduos , Humanos , PPAR gama/metabolismo , Transcriptoma , Extratos Vegetais/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
19.
Eur J Med Chem ; 235: 114240, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325635

RESUMO

The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in the regulation of the metabolic homeostasis and therefore represent valuable therapeutic targets for the treatment of metabolic diseases. The development of more balanced drugs interacting with PPARs, devoid of the side-effects showed by the currently marketed PPARγ full agonists, is considered the major challenge for the pharmaceutical companies. Here we present a chemoinformatics search approach for new ligands that let us identify a novel PPAR pan-agonist with a very attractive activity profile being able to reduce lipid accumulation and improve insulin sensitivity. This compound represents, therefore, the potential lead of a new class of drugs for treatment of dyslipidemic type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Quimioinformática , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Ligantes , Lipídeos , PPAR gama/agonistas , Receptores Ativados por Proliferador de Peroxissomo/metabolismo
20.
Cell Rep ; 40(7): 111233, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977477

RESUMO

5-Fluorouracil (5-FU) is a key component of chemotherapy for colorectal cancer (CRC). 5-FU efficacy is established by intracellular levels of folate cofactors and DNA damage repair strategies. However, drug resistance still represents a major challenge. Here, we report that alterations in serine metabolism affect 5-FU sensitivity in in vitro and in vivo CRC models. In particular, 5-FU-resistant CRC cells display a strong serine dependency achieved either by upregulating endogenous serine synthesis or increasing exogenous serine uptake. Importantly, regardless of the serine feeder strategy, serine hydroxymethyltransferase-2 (SHMT2)-driven compartmentalization of one-carbon metabolism inside the mitochondria represents a specific adaptation of resistant cells to support purine biosynthesis and potentiate DNA damage response. Interfering with serine availability or affecting its mitochondrial metabolism revert 5-FU resistance. These data disclose a relevant mechanism of mitochondrial serine use supporting 5-FU resistance in CRC and provide perspectives for therapeutic approaches.


Assuntos
Neoplasias Colorretais , Neoplasias , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Nucleotídeos/metabolismo , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA