Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Immunol ; 197(7): 2930-5, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27559052

RESUMO

The ∼28-kb 3' regulatory region (3'RR), which is located at the most distal 3' region of the Ig H chain locus, has multiple regulatory functions that control IgH expression, class-switch recombination (CSR), and somatic hypermutation. In this article, we report that deletion of the entire 3'RR in a mouse B cell line that is capable of robust cytokine-dependent CSR to IgA results in reduced, but not abolished, CSR. These data suggest that 3'RR is not absolutely required for CSR and, thus, is not essential for targeting activation-induced cytidine deaminase to S regions, as was suggested. Moreover, replacing 3'RR with a DNA fragment including only its four DNase I hypersensitive sites (lacking the large spacer regions) restores CSR to a level equivalent to or even higher than in wild-type cells, suggesting that the four hypersensitive sites contain most of the CSR-promoting functions of 3'RR. Stimulated cells express abundant germline transcripts, with the presence or absence of 3'RR, providing evidence that 3'RR has a role in promoting CSR that is unique from enhancing S region transcription.


Assuntos
Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/genética , Região de Troca de Imunoglobulinas/genética , Animais , Células Cultivadas , Imunoglobulina G/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Região de Troca de Imunoglobulinas/imunologia , Camundongos
2.
Front Microbiol ; 9: 3119, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619193

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gamma-herpesvirus that causes AIDS-associated Kaposi sarcoma (KS) and several lymphoproliferative disorders. During the humoral immune response antigen-activated mature B cells acquire functional diversification by immunoglobulin heavy chain (IgH) class-switch recombination (CSR). CSR is initiated by activation-induced cytidine deaminase (AID) which targets highly repetitive switch (S)-regions to mediate DNA double-stranded breaks (DSBs) in the IgH locus facilitating intramolecular recombination. Here we show that in the context of cytokine stimulation, CSR is enhanced in murine B cells exposed only to replication-competent KSHV in an environment of KSHV infection, which coincided with elevated AID transcripts. Using murine splenic B cells and the mouse lymphoma CH12F3-2 CSR system, we identified that vIL-6, but not murine IL-6, increased class-switching, which correlated with upregulated AID expression. Together, these data suggest a regulatory role for KSHV vIL-6 in functionally modulating B cell biology by promoting CSR, which may in part explain how KSHV infection influences humoral immunity and affect KSHV pathogenesis.

3.
Cell Rep ; 24(10): 2643-2657, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184499

RESUMO

Protein arginine methyltransferase 5 (PRMT5) is overexpressed in many cancer types and is a promising therapeutic target for several of them, including leukemia and lymphoma. However, we and others have reported that PRMT5 is essential for normal physiology. This dependence may become dose limiting in a therapeutic setting, warranting the search for combinatorial approaches. Here, we report that PRMT5 depletion or inhibition impairs homologous recombination (HR) DNA repair, leading to DNA-damage accumulation, p53 activation, cell-cycle arrest, and cell death. PRMT5 symmetrically dimethylates histone and non-histone substrates, including several components of the RNA splicing machinery. We find that PRMT5 depletion or inhibition induces aberrant splicing of the multifunctional histone-modifying and DNA-repair factor TIP60/KAT5, which selectively affects its lysine acetyltransferase activity and leads to impaired HR. As HR deficiency sensitizes cells to PARP inhibitors, we demonstrate here that PRMT5 and PARP inhibitors have synergistic effects on acute myeloid leukemia cells.


Assuntos
Proteína-Arginina N-Metiltransferases/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Morte Celular , Linhagem Celular Tumoral , Reparo do DNA/genética , Reparo do DNA/fisiologia , Código das Histonas/genética , Código das Histonas/fisiologia , Histonas/metabolismo , Humanos , Lisina Acetiltransferase 5/genética , Lisina Acetiltransferase 5/metabolismo , Lisina Acetiltransferases/genética , Lisina Acetiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética
4.
Nat Commun ; 9(1): 1248, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593215

RESUMO

Activation-induced deaminase (AID) mutates the immunoglobulin (Ig) genes to initiate somatic hypermutation (SHM) and class switch recombination (CSR) in B cells, thus underpinning antibody responses. AID mutates a few hundred other loci, but most AID-occupied genes are spared. The mechanisms underlying productive deamination versus non-productive AID targeting are unclear. Here we show that three clustered arginine residues define a functional AID domain required for SHM, CSR, and off-target activity in B cells without affecting AID deaminase activity or Escherichia coli mutagenesis. Both wt AID and mutants with single amino acid replacements in this domain broadly associate with Spt5 and chromatin and occupy the promoter of AID target genes. However, mutant AID fails to occupy the corresponding gene bodies and loses association with transcription elongation factors. Thus AID mutagenic activity is determined not by locus occupancy but by a licensing mechanism, which couples AID to transcription elongation.


Assuntos
Linfócitos B/metabolismo , Citidina Desaminase/metabolismo , Switching de Imunoglobulina , Mutagênese , Elongação da Transcrição Genética , Animais , Arginina/química , Linhagem Celular Tumoral , Cromatina/química , DNA/química , Desaminação , Escherichia coli/metabolismo , Genes de Imunoglobulinas , Humanos , Imunoglobulinas/química , Lipopolissacarídeos/química , Camundongos , Microscopia Confocal , Mutação , Domínios Proteicos , Hipermutação Somática de Imunoglobulina , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA