Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(30): 10955-60, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-24982144

RESUMO

Casing and cement impairment in oil and gas wells can lead to methane migration into the atmosphere and/or into underground sources of drinking water. An analysis of 75,505 compliance reports for 41,381 conventional and unconventional oil and gas wells in Pennsylvania drilled from January 1, 2000-December 31, 2012, was performed with the objective of determining complete and accurate statistics of casing and cement impairment. Statewide data show a sixfold higher incidence of cement and/or casing issues for shale gas wells relative to conventional wells. The Cox proportional hazards model was used to estimate risk of impairment based on existing data. The model identified both temporal and geographic differences in risk. For post-2009 drilled wells, risk of a cement/casing impairment is 1.57-fold [95% confidence interval (CI) (1.45, 1.67); P < 0.0001] higher in an unconventional gas well relative to a conventional well drilled within the same time period. Temporal differences between well types were also observed and may reflect more thorough inspections and greater emphasis on finding well leaks, more detailed note taking in the available inspection reports, or real changes in rates of structural integrity loss due to rushed development or other unknown factors. Unconventional gas wells in northeastern (NE) Pennsylvania are at a 2.7-fold higher risk relative to the conventional wells in the same area. The predicted cumulative risk for all wells (unconventional and conventional) in the NE region is 8.5-fold [95% CI (7.16, 10.18); P < 0.0001] greater than that of wells drilled in the rest of the state.

2.
Proc Natl Acad Sci U S A ; 111(17): 6237-42, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733927

RESUMO

The identification and quantification of methane emissions from natural gas production has become increasingly important owing to the increase in the natural gas component of the energy sector. An instrumented aircraft platform was used to identify large sources of methane and quantify emission rates in southwestern PA in June 2012. A large regional flux, 2.0-14 g CH4 s(-1) km(-2), was quantified for a ∼ 2,800-km(2) area, which did not differ statistically from a bottom-up inventory, 2.3-4.6 g CH4 s(-1) km(-2). Large emissions averaging 34 g CH4/s per well were observed from seven well pads determined to be in the drilling phase, 2 to 3 orders of magnitude greater than US Environmental Protection Agency estimates for this operational phase. The emissions from these well pads, representing ∼ 1% of the total number of wells, account for 4-30% of the observed regional flux. More work is needed to determine all of the sources of methane emissions from natural gas production, to ascertain why these emissions occur and to evaluate their climate and atmospheric chemistry impacts.

3.
Environ Health Perspect ; 125(8): 086004, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28858829

RESUMO

BACKGROUND: Higher risk of exposure to environmental health hazards near oil and gas wells has spurred interest in quantifying populations that live in proximity to oil and gas development. The available studies on this topic lack consistent methodology and ignore aspects of oil and gas development of value to public health-relevant assessment and decision-making. OBJECTIVES: We aim to present a methodological framework for oil and gas development proximity studies grounded in an understanding of hydrocarbon geology and development techniques. METHODS: We geospatially overlay locations of active oil and gas wells in the conterminous United States and Census data to estimate the population living in proximity to hydrocarbon development at the national and state levels. We compare our methods and findings with existing proximity studies. RESULTS: Nationally, we estimate that 17.6 million people live within 1,600m (∼1 mi) of at least one active oil and/or gas well. Three of the eight studies overestimate populations at risk from actively producing oil and gas wells by including wells without evidence of production or drilling completion and/or using inappropriate population allocation methods. The remaining five studies, by omitting conventional wells in regions dominated by historical conventional development, significantly underestimate populations at risk. CONCLUSIONS: The well inventory guidelines we present provide an improved methodology for hydrocarbon proximity studies by acknowledging the importance of both conventional and unconventional well counts as well as the relative exposure risks associated with different primary production categories (e.g., oil, wet gas, dry gas) and developmental stages of wells. https://doi.org/10.1289/EHP1535.


Assuntos
Saúde Ambiental , Hidrocarbonetos , Campos de Petróleo e Gás , Geografia , Humanos , Risco , Análise Espacial , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA